Literatura científica selecionada sobre o tema "Tomatoes Effect of salt on"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Tomatoes Effect of salt on".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Tomatoes Effect of salt on"
Zhang, Jifeng, Zhenhua Wang, Bihang Fan, Yusheng Hou, Yunqing Dou, Zuoli Ren e Xiaojie Chen. "Investigating the Proper Application Rate of Nitrogen under Mulched Drip Irrigation to Improve the Yield and Quality of Tomato in Saline Soil". Agronomy 10, n.º 2 (19 de fevereiro de 2020): 293. http://dx.doi.org/10.3390/agronomy10020293.
Texto completo da fonteRangseekaew, Pharada, Adoración Barros-Rodríguez, Wasu Pathom-aree e Maximino Manzanera. "Deep-Sea Actinobacteria Mitigate Salinity Stress in Tomato Seedlings and Their Biosafety Testing". Plants 10, n.º 8 (17 de agosto de 2021): 1687. http://dx.doi.org/10.3390/plants10081687.
Texto completo da fonteMartínez, Juan Pablo, Raúl Fuentes, Karen Farías, Carolina Lizana, Juan Felipe Alfaro, Lida Fuentes, Nicola Calabrese, Servane Bigot, Muriel Quinet e Stanley Lutts. "Effects of Salt Stress on Fruit Antioxidant Capacity of Wild (Solanum chilense) and Domesticated (Solanum lycopersicum var. cerasiforme) Tomatoes". Agronomy 10, n.º 10 (27 de setembro de 2020): 1481. http://dx.doi.org/10.3390/agronomy10101481.
Texto completo da fonteSeron, J. S., R. J. Ferree, S. L. Knight, M. A. L. Smith e L. A. Spomer. "EFFECTS OF INCREASED SALINITY ON PHOTOSYNTHETIC CAPACITY OF `MICRO TOM' MINIATURE DWARF TOMATO". HortScience 25, n.º 9 (setembro de 1990): 1092c—1092. http://dx.doi.org/10.21273/hortsci.25.9.1092c.
Texto completo da fonteLi, Jingang, Jing Chen, Zhongyi Qu, Shaoli Wang, Pingru He e Na Zhang. "Effects of Alternating Irrigation with Fresh and Saline Water on the Soil Salt, Soil Nutrients, and Yield of Tomatoes". Water 11, n.º 8 (15 de agosto de 2019): 1693. http://dx.doi.org/10.3390/w11081693.
Texto completo da fonteOliveira, Francisco de A. de, Francisco I. G. Paiva, José F. de Medeiros, Mikhael R. de S. Melo, Mychelle K. T. de Oliveira e Ricardo C. P. da Silvas. "Salinity tolerance of tomato fertigated with different K+/Ca2+ proportions in protected environment". Revista Brasileira de Engenharia Agrícola e Ambiental 25, n.º 9 (setembro de 2021): 620–25. http://dx.doi.org/10.1590/1807-1929/agriambi.v25n9p620-625.
Texto completo da fonteHossain, M. M., e H. Nonami. "Effect of salt stress on physiological response of tomato fruit grown in hydroponic culture system". Horticultural Science 39, No. 1 (16 de fevereiro de 2012): 26–32. http://dx.doi.org/10.17221/63/2011-hortsci.
Texto completo da fonteYan, Jianmin, Matthew D. Smith, Bernard R. Glick e Yan Liang. "Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (Solanum lycopersicum) under salt stress". Botany 92, n.º 11 (novembro de 2014): 775–81. http://dx.doi.org/10.1139/cjb-2014-0038.
Texto completo da fonteHanna, H. Y. "Properly Recycled Perlite Saves Money, Does Not Reduce Greenhouse Tomato Yield, and Can Be Reused for Many Years". HortTechnology 15, n.º 2 (janeiro de 2005): 342–45. http://dx.doi.org/10.21273/horttech.15.2.0342.
Texto completo da fonteWilson, Clyde, Robert A. Clark e Monica A. Madore. "EFFECT OF SALT STRESS ON SUGAR TRANSPORT IN TOMATO". HortScience 27, n.º 6 (junho de 1992): 684d—684. http://dx.doi.org/10.21273/hortsci.27.6.684d.
Texto completo da fonteTeses / dissertações sobre o assunto "Tomatoes Effect of salt on"
Al-Rawahy, Salim Ali. "Nitrogen uptake, growth rate and yield of tomatoes under saline conditions". Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184894.
Texto completo da fonteSlail, Nabeel Younis 1963. "INFLUENCE OF SODIUM-CHLORIDE ON TRANSPIRATION AND PLANT GROWTH OF TWO TOMATO CULTIVARS". Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276516.
Texto completo da fonteWang, Ding Xiang. "Interaction between the effects of sodium chloride and high temperature on the vegetative growth of tomato (Lycopersicon esculentum Mill.)". Title page, contents and summary only, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phw2456.pdf.
Texto completo da fonteDanon, Avihai. "Molecular events associated with halophytic growth in Lycopersicon pennellii". Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184642.
Texto completo da fonteLintnaar, Melissa. "The physiological responses of salinity stressed tomato plants to mycorrhizal infection and variation in rhizosphere carbon dioxide concentration". Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/52002.
Texto completo da fonteENGLISH ABSTRACT: This investigation was undertaken to determine whether elevated concentrations of dissolved inorganic carbon (DIC) supplied to plant roots could improve plant growth and alleviate the effects of salinity stress on tomato plants infected with arbuscular mycorrhizae. Lycopersicon esculentum cv. FI44 seedlings were grown in hydroponic culture (pH 5.8) with 0 and 75 mM NaCI and with or without infection with the fungus Glomus mosseae. The root solution was aerated with ambient CO2 (360 ppm) or elevated CO2 ( 5 000 ppm) concentrations. The arbuscular and hypha I components of mycorrhizal infection as well as the percentages total infection were decreased or increased according to the variation in seasons. The plant dry weight of mycorrhizal plants was increased by 30% compared to non-mycorrhizal plants at elevated concentrations of CO2, while the dry weight was decreased by 68% at ambient CO2 concentrations. Elevated CO2 also stimulated the growth of the mycorrhizal fungus. Elevated CO2 increased the plant dry weight and stimulated fungal growth of mycorrhizal plants possibly by the provision of carbon due to the incorporation of HCO)- by PEPc. Plant roots supplied with elevated concentrations of CO2 had a decreased CO2 release rate compared to roots at ambient CO2. This decrease in CO2 release rate at elevated CO2 was due to the increased incorporation of HC03- by PEPc activity. Under conditions of salinity stress plants had a higher ratio of N03-: reduced N in the xylem sap compared to plants supplied with 0 mM NaCI. Under salinity stress conditions, more N03- was transported in the xylem stream possibly because of the production of more organic acids instead of amino acids due to low P conditions under which the plants were grown. The N03· uptake rate of plants increased at elevated concentrations of CO2 in the absence of salinity because the HCO)- could be used for the production of amino acids. In the presence of salinity, carbon was possibly used for the production of organic acids that diverted carbon away from the synthesis of amino acids. It was concluded that mycorrhizas were beneficial for plant growth under conditions of salinity stress provided that there was an additional source of carbon. Arbuscular mycorrhizal infection did not improve the nutrient uptake of hydroponically grown plants.
AFRIKAANSE OPSOMMING: In hierdie studie was die effek van verhoogde konsentrasies opgeloste anorganiese koolstof wat aan plant wortels verskaf is, getoets om te bepaal of dit die groei van plante kan verbeter asook of sout stres verlig kon word in tamatie plante wat met arbuskulêre mikorrhizas geïnfekteer was. Lycorpersicon esculentum cv. FJ44 saailinge was in water kultuur gegroei (pH 5.8) met 0 en 75 mM NaCI asook met of sonder infeksie met die fungus Glomus mosseae. Die plant wortels was bespuit met normale CO2 (360 dele per miljoen (dpm)) sowel as verhoogde CO2 (5 000 dpm) konsentrasies. Die arbuskulere en hife komponente, sowel as die persentasie infeksie was vermeerder of verminder na gelang van die verandering in seisoen. Die plant droë massa van mikorrhiza geïnfekteerde plante by verhoogde CO2 konsentrasies was verhoog met 30% in vergelyking met plante wat nie geïnfekteer was nie, terwyl die droë massa met 68% afgeneem het by gewone CO2 konsentrasies. Verhoogde CO2 konsentrasies het moontlik die plant droë massa en die groei van die fungus verbeter deur koolstof te verskaf as gevolg van die vaslegging van HCO)- deur die werking van PEP karboksilase. Plant wortels wat met verhoogde CO2 konsentrasies bespuit was, het 'n verlaagde CO2 vrystelling getoon in vergelyking met die wortels by normale CO2 vlakke. Die vermindering in CO2 vrystelling van wortels by verhoogde CO2 was die gevolg van die vaslegging van HC03- deur PEPk aktiwiteit. Onder toestande van sout stres, het plante 'n groter hoeveelheid N03- gereduseerde N in die xileemsap bevat in vergelyking met plante wat onder geen sout stres was nie, asook meer NO)- was in die xileemsap vervoer moontlik omdat meer organiese sure geproduseer was ten koste van amino sure. Dit was die moontlike gevolg omdat die plante onder lae P toestande gegroei het. Die tempo van NO.; opname was verhoog onder verhoogde CO2 konsentrasies en in die afwesigheid van sout stres omdat die HCO)- vir die produksie van amino sure gebruik was. In die teenwoordigheid van sout was koolstof moontlik gebruik om organiese sure te vervaardig wat koolstof weggeneem het van die vervaardiging van amino sure. Daar is tot die slotsom gekom dat mikorrhizas voordelig is vir die groei van plante onder toestande van sout stres mits daar 'n addisionele bron van koolstof teenwoordig is. Arbuskulere mikorrhiza infeksie het 'n geringe invloed gehad op die opname van voedingstowwe van plante wat in waterkultuur gegroei was.
Rawahy, Salim Ali 1951. "EFFECT OF SODIUM-CHLORIDE, SODIUM-SULFATE AND CALCIUM-CHLORIDE SALTS ON NITROGEN AND PHOSPHORUS UPTAKE BY TOMATO PLANTS (SALINITY, OSMOTIC PRESSURE, SPECIFIC ION EFFECT)". Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/275527.
Texto completo da fonteAl-Bahrany, Abdulaziz Maatook 1960. "PHYSIOLOGICAL RESPONSES OF TOMATO CULTIVARS SUBJECTED TO SALINITY (GERMINATION, RESPIRATION)". Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/276460.
Texto completo da fonteSaif, Salman Mohammed 1958. "EFFECT OF SALINITY ON THE TOMATO PLANTS GROWN IN A HYDROPONIC SYSTEM". Thesis, The University of Arizona, 1986. http://hdl.handle.net/10150/277070.
Texto completo da fonteNeto, Egidio Bezerra. "Salt tolerance in tomatoes". Thesis, Bangor University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332560.
Texto completo da fonteDessalegne, Lemma. "Salt tolerance in tomatoes (Lycopersicon esculentum Mill)". Thesis, University of Reading, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336686.
Texto completo da fonteLivros sobre o assunto "Tomatoes Effect of salt on"
Hassan, Noaman Shawky. In vitro effect of salinity and selection for salt tolerant lines in some tomato species. Birmingham: University of Birmingham, 1987.
Encontre o texto completo da fonteGoudie, Andrew. Salt weathering. Oxford: University of Oxford School of Geography, 1985.
Encontre o texto completo da fonteGoudie, Andrew. Salt weathering. Oxford: School of Geography, University of Oxford, 1985.
Encontre o texto completo da fonteVapor-liquid equilibrium data--salt effect. Tokyo: Kodansha, 1991.
Encontre o texto completo da fonteWorld Salt Symposium (8th 2000 Hague, Netherlands). 8th World Salt Symposium. Amsterdam: Elsevier, 2000.
Encontre o texto completo da fonteSymposium, on Salt (7th 1992 Kyoto Japan). Seventh Symposium on Salt. Amsterdam: Elsevier, 1993.
Encontre o texto completo da fonteNavarrete, Francisco Fernández. La sal admirable de España (1738): Discurso médico-histórico y físico-analítico. Almería ; Barcelona: Griselda Bonet Girabet, 1998.
Encontre o texto completo da fonteMacLean, Jayne T. Salt tolerance in plants, 1983-85: 137 citations. Beltsville, Md: U. S. Dept. of Agriculture, National Agricultural Library, 1986.
Encontre o texto completo da fonteLangre, Jacques de. Seasalt's hidden powers: The biological action of all ocean minerals on body and mind. Asheville, N.C: Happiness Press, 1994.
Encontre o texto completo da fonteInternational Symposium on Inland Saline Lakes (5th 1991 Hotel Titikaka, Bolivia). Saline lakes V: Proceedings of the Vth International Symposium on Inland Saline Lakes, held in Bolivia, 22-29 March 1991. Dordrecht: Kluwer Academic, 1993.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Tomatoes Effect of salt on"
Saito, Takeshi, e Chiaki Matsukura. "Effect of Salt Stress on the Growth and Fruit Quality of Tomato Plants". In Abiotic Stress Biology in Horticultural Plants, 3–16. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55251-2_1.
Texto completo da fonteFakhri, Nesrine, Hsan Youssef Mehdaoui, Nada Elloumi e Monem Kallel. "Magnetic Treatment Effects on Salt Water and Tomato Plants Growth". In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 1095–97. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70548-4_316.
Texto completo da fonteDelgado, João M. P. Q., Fernando A. N. Silva, António C. Azevedo e Ariosvaldo Ribeiro. "Effect of Soluble Mineral Salts". In Salt Damage in Ceramic Brick Masonry, 29–52. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47114-9_4.
Texto completo da fonteZhou, Liya, Junyan Huang, Hao Xing, Qinghua Gao, Yaoqi Li e Xiaomin Li. "Edible Coating Packaging and Its Preservation Effect to Cherry Tomatoes". In Lecture Notes in Electrical Engineering, 1075–84. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3530-2_132.
Texto completo da fonteChang, K. R., e K. Sommer. "The effect of nitrogen supply by NH4-beaker-deposits on tomatoes". In Plant Nutrition, 770–71. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/0-306-47624-x_374.
Texto completo da fonteTangwongchai, R., D. A. Ledward e J. M. Ames. "Effect of High Pressure Treatment on Lipoxygenase Activity in Cherry Tomatoes". In Advances in High Pressure Bioscience and Biotechnology, 435–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60196-5_98.
Texto completo da fonteNakagawa, Masao, Kazuo Takeda, Tatsuo Yoshitomi, Hiroshi Itoh, Tetsuo Nakata e Susumu Sasaki. "Antihypertensive Effect of Taurine on Salt-Induced Hypertension". In Advances in Experimental Medicine and Biology, 197–206. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1471-2_20.
Texto completo da fonteSmaoui, A., e A. Cherif. "Effect of Salt on Lipid Reserves of Cotton Seeds". In Biological Role of Plant Lipids, 541–42. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-1303-8_120.
Texto completo da fonteLi, Yuan Hui, De Fu Luo e Shao Xu Wu. "Effect of QPQ Salt Bath Oxidation on Corrosion Resistance". In Solid State Phenomena, 209–14. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908451-25-6.209.
Texto completo da fonteHeard, H. C., e F. J. Ryerson. "Effect of cation impurities on steady-state flow of salt". In Mineral and Rock Deformation: Laboratory Studies, 99–115. Washington, D. C.: American Geophysical Union, 1986. http://dx.doi.org/10.1029/gm036p0099.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Tomatoes Effect of salt on"
MARTINEZ, Juan Pablo. "Effect of salt-tolerant rootstock issued from an interspecific cross between cultivated and wild relative halophyte tomato on physiological parameters in". In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.1053049.
Texto completo da fonteSilva Junior, J. F., A. E. Klar, A. A. Tanaka, I. P. F. Silva e A. I. I. Cardoso. "Tomatoes Seeds Vigor under Water or Salt Stress". In II Inovagri International Meeting. Fortaleza, Ceará, Brasil: INOVAGRI/INCT-EI/INCTSal, 2014. http://dx.doi.org/10.12702/ii.inovagri.2014-a734.
Texto completo da fonte"Effects of sewage application on salt accumulation in soil and on sap flow of tomato plants under drip irrigation". In 2015 ASABE / IA Irrigation Symposium: Emerging Technologies for Sustainable Irrigation - A Tribute to the Career of Terry Howell, Sr. Conference Proceedings. American Society of Agricultural and Biological Engineers, 2015. http://dx.doi.org/10.13031/irrig.20152143534.
Texto completo da fonteBlaine Hanson e Don May. "Effect of Subsurface Drip Irrigation on Processing Tomatoes Yield, Water Table Depth, and Soil Salinity". In 2003, Las Vegas, NV July 27-30, 2003. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2003. http://dx.doi.org/10.13031/2013.13774.
Texto completo da fonteCampos, Gilson, Cristina Alex Simao, Cristiane Richard de Miranda, Sandip Patil, Abhimanyu Deshpande, Rahul C. Patil e Kris Ravi. "Salt Tolerant Cement Systems to Mitigate Gelling Effect". In IADC/SPE Asia Pacific Drilling Technology Conference. Society of Petroleum Engineers, 2014. http://dx.doi.org/10.2118/170477-ms.
Texto completo da fonteAnderson, K., O. Chvála, S. Skutnik e A. Wheeler. "Plutonium Diversion Effect on Molten-Salt Reactor Dynamics". In Tranactions - 2019 Winter Meeting. AMNS, 2019. http://dx.doi.org/10.13182/t31324.
Texto completo da fonteYamamoto, Takahisa, Koshi Mitachi e Takashi Suzuki. "Steady State Analysis of Molten Salt Reactor in Consideration of the Effect of Fuel Salt Flow". In 12th International Conference on Nuclear Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/icone12-49077.
Texto completo da fonteHongchuan Dong, Wenjie Xu, Bin Cao, Liming Wang e Zhicheng Guan. "Effect of soluble salt on conductivity of partial surface". In 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena - (CEIDP). IEEE, 2015. http://dx.doi.org/10.1109/ceidp.2015.7352054.
Texto completo da fonteAranghel, D., C. R. Badita, A. Radulescu, L. Moldovan, O. Craciunescu e M. Balasoiu. "The effect of divalent salt in chondroitin sulfate solutions". In 9TH INTERNATIONAL PHYSICS CONFERENCE OF THE BALKAN PHYSICAL UNION (BPU-9). AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4944236.
Texto completo da fonteZandraa, Oyunchimeg, Nabanita Saha, Tomas Saha, Takeshi Kitano e Petr Sáha. "Effect of salt concentration and temperature on the rheological properties of guar gum-dead sea salt gel". In PROCEEDINGS OF THE REGIONAL CONFERENCE GRAZ 2015 – POLYMER PROCESSING SOCIETY PPS: Conference Papers. Author(s), 2016. http://dx.doi.org/10.1063/1.4965544.
Texto completo da fonteRelatórios de organizações sobre o assunto "Tomatoes Effect of salt on"
Gray, W. J. Effect of surface oxidation, alpha radiolysis, and salt brine composition on spent fuel and UO/sub 2/ leaching performance: Salt Repository Project. Office of Scientific and Technical Information (OSTI), junho de 1988. http://dx.doi.org/10.2172/6783908.
Texto completo da fonteBradshaw, Robert W., e W. Miles Clift. Effect of chloride content of molten nitrate salt on corrosion of A516 carbon steel. Office of Scientific and Technical Information (OSTI), novembro de 2010. http://dx.doi.org/10.2172/1002088.
Texto completo da fonteDemirbas, Sefer, e Alpay Balkan. The Effect of H2O2 Pre-treatment on Antioxidant Enzyme Activities of Triticale under Salt Stress. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, agosto de 2020. http://dx.doi.org/10.7546/crabs.2020.08.17.
Texto completo da fonteJacobs, R. A. Response of DWPF thermal flowmeters to composition change: Effect on 02 determination in Salt Process Cell. Office of Scientific and Technical Information (OSTI), fevereiro de 1992. http://dx.doi.org/10.2172/10136686.
Texto completo da fonteKirova, Elisaveta. Effect of Nitrogen Nutrition Source on Antioxidant Defense System of Soybean Plants Subjected to Salt Stress. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, fevereiro de 2020. http://dx.doi.org/10.7546/crabs.2020.02.09.
Texto completo da fonteGorham, P. Accelerator Measurments of the Askaryan Effect in Rock Salt: A Roadmap Toward Teraton Underground Neutrino Detectors. Office of Scientific and Technical Information (OSTI), dezembro de 2004. http://dx.doi.org/10.2172/839783.
Texto completo da fonteJacobs, R. A. Response of DWPF thermal flowmeters to composition change: Effect on 02 determination in Salt Process Cell. Office of Scientific and Technical Information (OSTI), fevereiro de 1992. http://dx.doi.org/10.2172/6985879.
Texto completo da fonteBarnes, M. J. The Effect of Tri-N-Butyl Phosphate on Tank 48 as a Result of Salt Solution Transfers within the In-Tank Precipitation Facility. Office of Scientific and Technical Information (OSTI), maio de 1994. http://dx.doi.org/10.2172/292673.
Texto completo da fonteHambley, D. F., J. E. Russell, R. G. Whitfield, L. D. McGinnis, W. Harrison, C. H. Jacoby, T. R. Bump, D. Z. Mraz, J. S. Busch e L. E. Fischer. Radioactive waste isolation in salt: Peer review of the Fluor Technology, Inc. , report and position paper concerning waste emplacement mode and its effect on repository conceptual design. Office of Scientific and Technical Information (OSTI), fevereiro de 1987. http://dx.doi.org/10.2172/7094062.
Texto completo da fonteWang, Chih-Hao, e Na Chen. Do Multi-Use-Path Accessibility and Clustering Effect Play a Role in Residents' Choice of Walking and Cycling? Mineta Transportation Institute, junho de 2021. http://dx.doi.org/10.31979/mti.2021.2011.
Texto completo da fonte