Artigos de revistas sobre o tema "Time-Harmonic scattering"

Siga este link para ver outros tipos de publicações sobre o tema: Time-Harmonic scattering.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Time-Harmonic scattering".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Colton, David, e Rainer Kress. "Time harmonic electromagnetic waves in an inhomogeneous medium". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 116, n.º 3-4 (1990): 279–93. http://dx.doi.org/10.1017/s0308210500031516.

Texto completo da fonte
Resumo:
SynopsisWe consider the scattering of time harmonic electromagnetic waves by an inhomogeneous medium of compact support, i.e. the permittivity ε = ε(x) and the conductivity σ = σ(x) are functions of x ∊ ℝ3. Existence, uniqueness and regularity results are established for the direct scattering problem. Then, based on existence and uniqueness results for the exterior and interior impedance boundary value problem, a method is presented for solving the inverse scattering problem.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Dassios, G., e K. S. Karadima. "Time harmonic acoustic scattering in anisotropic media". Mathematical Methods in the Applied Sciences 28, n.º 12 (2005): 1383–401. http://dx.doi.org/10.1002/mma.609.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Spence, E. A. "Wavenumber-Explicit Bounds in Time-Harmonic Acoustic Scattering". SIAM Journal on Mathematical Analysis 46, n.º 4 (janeiro de 2014): 2987–3024. http://dx.doi.org/10.1137/130932855.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kress, Rainer. "Boundary integral equations in time-harmonic acoustic scattering". Mathematical and Computer Modelling 15, n.º 3-5 (1991): 229–43. http://dx.doi.org/10.1016/0895-7177(91)90068-i.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Chandler-Wilde, Simon N., e Peter Monk. "Wave-Number-Explicit Bounds in Time-Harmonic Scattering". SIAM Journal on Mathematical Analysis 39, n.º 5 (janeiro de 2008): 1428–55. http://dx.doi.org/10.1137/060662575.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Ishida, Atsuhide, e Masaki Kawamoto. "Critical scattering in a time-dependent harmonic oscillator". Journal of Mathematical Analysis and Applications 492, n.º 2 (dezembro de 2020): 124475. http://dx.doi.org/10.1016/j.jmaa.2020.124475.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Shao, Yang, Zhen Peng, Kheng Hwee Lim e Jin-Fa Lee. "Non-conformal domain decomposition methods for time-harmonic Maxwell equations". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, n.º 2145 (4 de abril de 2012): 2433–60. http://dx.doi.org/10.1098/rspa.2012.0028.

Texto completo da fonte
Resumo:
We review non-conformal domain decomposition methods (DDMs) and their applications in solving electrically large and multi-scale electromagnetic (EM) radiation and scattering problems. In particular, a finite-element DDM, together with a finite-element tearing and interconnecting (FETI)-like algorithm, incorporating Robin transmission conditions and an edge corner penalty term , are discussed in detail. We address in full the formulations, and subsequently, their applications to problems with significant amounts of repetitions. The non-conformal DDM approach has also been extended into surface integral equation methods. We elucidate a non-conformal integral equation domain decomposition method and a generalized combined field integral equation method for modelling EM wave scattering from non-penetrable and penetrable targets, respectively. Moreover, a plane wave scattering from a composite mockup fighter jet has been simulated using the newly developed multi-solver domain decomposition method.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Hu, Guanghui, Wangtao Lu e Andreas Rathsfeld. "Time-Harmonic Acoustic Scattering from Locally Perturbed Periodic Curves". SIAM Journal on Applied Mathematics 81, n.º 6 (janeiro de 2021): 2569–95. http://dx.doi.org/10.1137/19m1301679.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Bao, Gang, Guanghui Hu e Tao Yin. "Time-Harmonic Acoustic Scattering from Locally Perturbed Half-Planes". SIAM Journal on Applied Mathematics 78, n.º 5 (janeiro de 2018): 2672–91. http://dx.doi.org/10.1137/18m1164068.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Zhang, Cheng, Jin Yang, Liu Xi Yang, Jun Chen Ke, Ming Zheng Chen, Wen Kang Cao, Mao Chen et al. "Convolution operations on time-domain digital coding metasurface for beam manipulations of harmonics". Nanophotonics 9, n.º 9 (18 de fevereiro de 2020): 2771–81. http://dx.doi.org/10.1515/nanoph-2019-0538.

Texto completo da fonte
Resumo:
AbstractTime-domain digital coding metasurfaces have been proposed recently to achieve efficient frequency conversion and harmonic control simultaneously; they show considerable potential for a broad range of electromagnetic applications such as wireless communications. However, achieving flexible and continuous harmonic wavefront control remains an urgent problem. To address this problem, we present Fourier operations on a time-domain digital coding metasurface and propose a principle of nonlinear scattering-pattern shift using a convolution theorem that facilitates the steering of scattering patterns of harmonics to arbitrarily predesigned directions. Introducing a time-delay gradient into a time-domain digital coding metasurface allows us to successfully deviate anomalous single-beam scattering in any direction, and thus, the corresponding formula for the calculation of the scattering angle can be derived. We expect this work to pave the way for controlling energy radiations of harmonics by combining a nonlinear convolution theorem with a time-domain digital coding metasurface, thereby achieving more efficient control of electromagnetic waves.
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Colton, David. "Dense sets and far field patterns for acoustic waves in an inhomogeneous medium". Proceedings of the Edinburgh Mathematical Society 31, n.º 3 (outubro de 1988): 401–7. http://dx.doi.org/10.1017/s0013091500006799.

Texto completo da fonte
Resumo:
In this paper, we shall obtain two results on the class of far field patterns corresponding to the scattering of time harmonic acoustic plane waves by an inhomogeneous medium of compact support. Although the problem of characterizing the class of far field patterns is of basic importance in inverse scattering theory, very little is known about this class other than the fact that the far field patterns are entire functions of their independent (complex) variables for each positive fixed value of the wave number. In particular, the class of far field patterns is not all of L2(∂Ω) where ∂Ω is the unit sphere and this implies that the inverse scattering problem is improperly posed since the far field patterns are, in practice, determined from inexact measurements. The purpose of this paper is to show that while the class of far field patterns corresponding to the scattering of time harmonic plane waves by an inhomogeneous medium is not all of L2(∂Ω), it is dense in L2(∂Ω) for sufficiently small values of the wave number. In addition, a related result will be obtained for a special translation of the class of far field patterns. Analogous results for the scattering of time harmonic acoustic waves by a homogeneous scattering obstacle have recently been obtained by Colton [1], Colton and Kirsch [2], Colton and Monk [3, 4] and Kirsch [8].
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

BERMÚDEZ, ALFREDO, LUIS HERVELLA-NIETO, ANDRÉS PRIETO e RODOLFO RODRÍGUEZ. "VALIDATION OF ACOUSTIC MODELS FOR TIME-HARMONIC DISSIPATIVE SCATTERING PROBLEMS". Journal of Computational Acoustics 15, n.º 01 (março de 2007): 95–121. http://dx.doi.org/10.1142/s0218396x07003238.

Texto completo da fonte
Resumo:
The aim of this paper is to study the time-harmonic scattering problem in a coupled fluid-porous medium system. We consider two different models for the treatment of porous materials: the Allard–Champoux equations and an approximate model based on a wall impedance condition. Both models are compared by computing analytically their respective solutions for unbounded planar obstacles, considering successively plane and spherical waves. A numerical method combining an optimal bounded PML and finite elements is also introduced to compute the solutions of both problems for more general axisymmetric geometries. This method is used to compare the solutions for a spherical absorber.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Bao, Gang, e Peijun Li. "Inverse medium scattering for three-dimensional time harmonic Maxwell equations". Inverse Problems 20, n.º 2 (22 de janeiro de 2004): L1—L7. http://dx.doi.org/10.1088/0266-5611/20/2/l01.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Khajah, Tahsin, Xavier Antoine e Stéphane P. A. Bordas. "B-Spline FEM for Time-Harmonic Acoustic Scattering and Propagation". Journal of Theoretical and Computational Acoustics 27, n.º 03 (setembro de 2019): 1850059. http://dx.doi.org/10.1142/s2591728518500597.

Texto completo da fonte
Resumo:
We study the application of a B-splines Finite Element Method (FEM) to time-harmonic scattering acoustic problems. The infinite space is truncated by a fictitious boundary and second-order Absorbing Boundary Conditions (ABCs) are applied. The truncation error is included in the exact solution so that the reported error is an indicator of the performance of the numerical method, in particular of the size of the pollution error. Numerical results performed with high-order basis functions (third or fourth order) showed no visible pollution error even for very high frequencies. To prove the ability of the method to increase its accuracy in the high frequency regime, we show how to implement a high-order Padé-type ABC on the fictitious outer boundary. The above-mentioned properties combined with exact geometrical representation make B-Spline FEM a very promising platform to solve high-frequency acoustic problems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Lu, Wangtao, e Guanghui Hu. "Time-Harmonic Acoustic Scattering from a Nonlocally Perturbed Trapezoidal Surface". SIAM Journal on Scientific Computing 41, n.º 3 (janeiro de 2019): B522—B544. http://dx.doi.org/10.1137/18m1216195.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Wei, Xing, e Linlin Sun. "Singular boundary method for 3D time-harmonic electromagnetic scattering problems". Applied Mathematical Modelling 76 (dezembro de 2019): 617–31. http://dx.doi.org/10.1016/j.apm.2019.06.039.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Vico, Felipe, Miguel Ferrando, Leslie Greengard e Zydrunas Gimbutas. "The Decoupled Potential Integral Equation for Time-Harmonic Electromagnetic Scattering". Communications on Pure and Applied Mathematics 69, n.º 4 (28 de maio de 2015): 771–812. http://dx.doi.org/10.1002/cpa.21585.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Hazard, Christophe, e Marc Lenoir. "On the Solution of Time-Harmonic Scattering Problems for Maxwell’s Equations". SIAM Journal on Mathematical Analysis 27, n.º 6 (novembro de 1996): 1597–630. http://dx.doi.org/10.1137/s0036141094271259.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Kress, Rainer. "Numerical Solution of Boundary Integral Equations in Time-Harmonic Electromagnetic Scattering". Electromagnetics 10, n.º 1-2 (janeiro de 1990): 1–20. http://dx.doi.org/10.1080/02726349008908226.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Chen, Zhiming, e Xuezhe Liu. "An Adaptive Perfectly Matched Layer Technique for Time-harmonic Scattering Problems". SIAM Journal on Numerical Analysis 43, n.º 2 (janeiro de 2005): 645–71. http://dx.doi.org/10.1137/040610337.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Chen, Zhiming, e Xuezhe Liu. "An Adaptive Perfectly Matched Layer Technique for Time-harmonic Scattering Problems". SIAM Journal on Numerical Analysis 43, n.º 2 (janeiro de 2005): 645–71. http://dx.doi.org/10.1137/040610337%\margin.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Luan, Tian, Yao Sun e Zibo Zhuang. "A meshless numerical method for time harmonic quasi-periodic scattering problem". Engineering Analysis with Boundary Elements 104 (julho de 2019): 320–31. http://dx.doi.org/10.1016/j.enganabound.2019.03.034.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Bermúdez, A., L. Hervella-Nieto, A. Prieto e R. Rodríguez. "An Exact Bounded Perfectly Matched Layer for Time-Harmonic Scattering Problems". SIAM Journal on Scientific Computing 30, n.º 1 (janeiro de 2008): 312–38. http://dx.doi.org/10.1137/060670912.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

JOST, GABRIELE. "Integral Equations with Modified Fundamental Solution in Time-Harmonic Electromagnetic Scattering". IMA Journal of Applied Mathematics 40, n.º 2 (1988): 129–43. http://dx.doi.org/10.1093/imamat/40.2.129.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Athanasiadis, Christodoulos. "On the acoustic scattering amplitude for a multi-layered Scatterer". Journal of the Australian Mathematical Society. Series B. Applied Mathematics 39, n.º 4 (abril de 1998): 431–48. http://dx.doi.org/10.1017/s0334270000007736.

Texto completo da fonte
Resumo:
AbstractWe consider the boundary-value problems corresponding to the scattering of a time-harmonic acoustic plane wave by a multi-layered obstacle with a sound-soft, hard or penetrable core. Firstly, we construct in closed forms the normalized scattering amplitudes and prove the classical reciprocity and scattering theorems for these problems. These results are then used to study the spectrum of the scattering amplitude operator. The scattering cross-section is expressed in terms of the forward value of the corresponding normalized scattering amplitude. Finally, we develop a more general theory for scattering relations.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

ATASSI, OLIVER V., e AMR A. ALI. "INFLOW/OUTFLOW CONDITIONS FOR TIME-HARMONIC INTERNAL FLOWS". Journal of Computational Acoustics 10, n.º 02 (junho de 2002): 155–82. http://dx.doi.org/10.1142/s0218396x02001668.

Texto completo da fonte
Resumo:
Inflow/Outflow conditions are formulated for time-harmonic waves in a duct governed by the Euler equations. These conditions are used to compute the propagation of acoustic and vortical disturbances and the scattering of vortical waves into acoustic waves by an annular cascade. The outflow condition is expressed in terms of the pressure, thus avoiding the velocity discontinuity across any vortex sheets. The numerical solutions are compared with the analytical solutions for acoustic and vortical wave propagation with and without the presence of vortex sheets. Grid resolution studies are also carried out to discern the truncation error of the numerical scheme from the error associated with numerical reflections at the boundary. It is observed that even with the use of exponentially accurate boundary conditions, the dispersive characteristics of the numerical scheme may result in small reflections from the boundary that slow convergence. Finally, the three-dimensional interaction of a wake with a flat plate cascade is computed and the aerodynamic and aeroacoustic results are compared with those of lifting surface methods.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Dhia, A. S. Bonnet-Ben, J. F. Mercier, F. Millot, S. Pernet e E. Peynaud. "Time-Harmonic Acoustic Scattering in a Complex Flow: A Full Coupling Between Acoustics and Hydrodynamics". Communications in Computational Physics 11, n.º 2 (fevereiro de 2012): 555–72. http://dx.doi.org/10.4208/cicp.221209.030111s.

Texto completo da fonte
Resumo:
AbstractFor the numerical simulation of time harmonic acoustic scattering in a complex geometry, in presence of an arbitrary mean flow, the main difficulty is the coexistence and the coupling of two very different phenomena: acoustic propagation and convection of vortices. We consider a linearized formulation coupling an augmented Galbrun equation (for the perturbation of displacement) with a time harmonic convection equation (for the vortices). We first establish the well-posedness of this time harmonic convection equation in the appropriate mathematical framework. Then the complete problem, with Perfectly Matched Layers at the artificial boundaries, is proved to be coercive + compact, and a hybrid numerical method for the solution is proposed, coupling finite elements for the Galbrun equation and a Discontinuous Galerkin scheme for the convection equation. Finally a 2D numerical result shows the efficiency of the method.
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Abdelli, S., A. Khalfaoui, T. Kerdja e D. Ghobrini. "Laser-plasma interaction properties through second harmonic generation". Laser and Particle Beams 10, n.º 4 (dezembro de 1992): 629–37. http://dx.doi.org/10.1017/s0263034600004559.

Texto completo da fonte
Resumo:
An experimental analysis is conducted to visualize sidescattered second harmonic spectra originating from the critical surface of a plasma produced from a 1, 064-nm laser beam. It is shown that longitudinal and transverse wave-scattering mechanisms producing the second harmonic may also alter the local plasma parameters. These irregular plasma parameter variations and the perturbed spatial uniformity of the incident laser beam can, in turn, be visualized through the second harmonic behavior. This work confirms the origin of the second harmonic production in an inhomogeneous plasma. Time evolution of the optical density of this harmonic showed spectral shifts due to the Doppler effect related to the critical surface dynamics. On the time-integrated spectra, shifted secondary peaks have been observed, indicating that the second harmonic takes its origin also from parametric decay as well as electron decay instability. Other properties of the interaction physics are deduced from the present second harmonic study.
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

ATHANASIADIS, CHRISTODOULOS. "Scattering theorems for time-harmonic electromagnetic waves in a piecewise homogeneous medium". Mathematical Proceedings of the Cambridge Philosophical Society 123, n.º 1 (janeiro de 1998): 179–90. http://dx.doi.org/10.1017/s0305004197001977.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Li, Junpu, Lan Zhang e Qing-Hua Qin. "A regularized method of moments for three-dimensional time-harmonic electromagnetic scattering". Applied Mathematics Letters 112 (fevereiro de 2021): 106746. http://dx.doi.org/10.1016/j.aml.2020.106746.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Hettlich, F. "Uniqueness of the Inverse Conductive Scattering Problem for Time-Harmonic Electromagnetic Waves". SIAM Journal on Applied Mathematics 56, n.º 2 (abril de 1996): 588–601. http://dx.doi.org/10.1137/s003613999427382x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Hohage, Thorsten, Frank Schmidt e Lin Zschiedrich. "Solving Time-Harmonic Scattering Problems Based on the Pole Condition I: Theory". SIAM Journal on Mathematical Analysis 35, n.º 1 (janeiro de 2003): 183–210. http://dx.doi.org/10.1137/s0036141002406473.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Hu, G., e A. Rathsfeld. "Scattering of time-harmonic electromagnetic plane waves by perfectly conducting diffraction gratings". IMA Journal of Applied Mathematics 80, n.º 2 (23 de janeiro de 2014): 508–32. http://dx.doi.org/10.1093/imamat/hxt054.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Kress, Rainer. "On the boundary operator in electromagnetic scattering". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 103, n.º 1-2 (1986): 91–98. http://dx.doi.org/10.1017/s0308210500014037.

Texto completo da fonte
Resumo:
SynopsisFor radiating solutions to the time-harmonic Maxwell equations, it is shown that the boundary operator mapping the tangential components of the electric field into the tangential components of the magnetic field is a bounded bijective operator from the space of Holder continuous tangential fields with Hölder continuous surface divergence onto itself.
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Ngo, Hoang Minh, Ngoc Diep Lai e Isabelle Ledoux-Rak. "High second-order nonlinear response of platinum nanoflowers: the role of surface corrugation". Nanoscale 8, n.º 6 (2016): 3489–95. http://dx.doi.org/10.1039/c5nr07571h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

SAITO, SHINGO, e TOHRU SUEMOTO. "SPATIAL AND MOMENTUM DIFFUSION OF ENERGETIC HOLES IN InAs BY TWO COLOR PUMP-PROBE METHOD". International Journal of Modern Physics B 15, n.º 28n30 (10 de dezembro de 2001): 3932–35. http://dx.doi.org/10.1142/s0217979201009037.

Texto completo da fonte
Resumo:
Time-resolved electronic Raman scattering of a direct-gap semiconductor, InAs was measured by pump-probe method. We used fundamental pulses and second harmonic pulses of mode-locked Ti:S laser as excitation sources, and fundamental pulses as the probe beam. The time-resolved Raman intensities corresponding to the transition from heavy hole band to light hole band showed different features depending on the excitation energy. In case of the fundamental beam excitation, Raman intensity decreased monotonously. On the contrary, Raman intensity under the second harmonic excitation showed a maximum at a few picosecond after excitation. From the analysis, the temperature of photo-excited hole changed from 5300K to 1300K in 2psec and from 1300K to RT within 4 psec under the second harmonics excitation. It has been shown that the time-resolved Raman scattering measurement is a useful tool to investigate dynamics of the energetic carriers.
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Schneider, Stefan. "Application of Fast Methods for Acoustic Scattering and Radiation Problems". Journal of Computational Acoustics 11, n.º 03 (setembro de 2003): 387–401. http://dx.doi.org/10.1142/s0218396x03002012.

Texto completo da fonte
Resumo:
Our work is devoted to the solution of large scale (kl = 10…100π) three dimensional radiation and scattering problems covered by the time harmonic Helmholtz equation. We present an application of the Regular Grid Method and Multilevel Fast Multipole Method to acoustic scattering problems. These methods lead to a memory requirement of [Formula: see text] that enables us to solve scattering or radiation problems with several ten-thousands of unknowns. In a computational examples we show the efficiency of these methods.
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Morioka, Hisashi. "Generalized eigenfunctions and scattering matrices for position-dependent quantum walks". Reviews in Mathematical Physics 31, n.º 07 (29 de julho de 2019): 1950019. http://dx.doi.org/10.1142/s0129055x19500193.

Texto completo da fonte
Resumo:
We study the spectral analysis and the scattering theory for time evolution operators of position-dependent quantum walks. Our main purpose of this paper is the construction of generalized eigenfunctions of the time evolution operator. Roughly speaking, the generalized eigenfunctions are not square summable but belong to [Formula: see text]-space on [Formula: see text]. Moreover, we derive a characterization of the set of generalized eigenfunctions in view of the time-harmonic scattering theory. Thus we show that the S-matrix associated with the quantum walk appears in the singularity expansion of generalized eigenfunctions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Mock, Adam. "Calculating Scattering Spectra using Time-domain Modeling of Time-modulated Systems". Applied Computational Electromagnetics Society 35, n.º 11 (3 de fevereiro de 2021): 1288–89. http://dx.doi.org/10.47037/2020.aces.j.351113.

Texto completo da fonte
Resumo:
Obtaining agreement between theoretical predictions that assume single-frequency excitation and finite-difference time-domain (FDTD) simulations that employ broadband excitation in the presence of time-varying materials is challenging due to frequency mixing. A simple solution is proposed to reduce artifacts in FDTD-calculated spectra from the frequency mixing induced by harmonic refractive index modulation applicable to scenarios in which second order and higher harmonics are negligible. Advantages of the proposed method are its simplicity and applicability to arbitrary problems including resonant structures.
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Yang, Zhiguo, Li-Lian Wang e Yang Gao. "A Truly Exact Perfect Absorbing Layer for Time-Harmonic Acoustic Wave Scattering Problems". SIAM Journal on Scientific Computing 43, n.º 2 (janeiro de 2021): A1027—A1061. http://dx.doi.org/10.1137/19m1294071.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Tang, Guangxin, Laurence J. Jacobs e Jianmin Qu. "Scattering of time-harmonic elastic waves by an elastic inclusion with quadratic nonlinearity". Journal of the Acoustical Society of America 131, n.º 4 (abril de 2012): 2570–78. http://dx.doi.org/10.1121/1.3692233.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Coyle, Joe, e Peter Monk. "Scattering of Time-Harmonic Electromagnetic Waves by Anisotropic Inhomogeneous Scatterers or Impenetrable Obstacles". SIAM Journal on Numerical Analysis 37, n.º 5 (janeiro de 2000): 1590–617. http://dx.doi.org/10.1137/s0036142998349515.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Barnett, A. H., e T. Betcke. "An Exponentially Convergent Nonpolynomial Finite Element Method for Time-Harmonic Scattering from Polygons". SIAM Journal on Scientific Computing 32, n.º 3 (janeiro de 2010): 1417–41. http://dx.doi.org/10.1137/090768667.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Misici, Luciano, e Francesco Zirilli. "Three-Dimensional Inverse Obstacle Scattering for Time Harmonic Acoustic Waves: A Numerical Method". SIAM Journal on Scientific Computing 15, n.º 5 (setembro de 1994): 1174–89. http://dx.doi.org/10.1137/0915072.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Lechleiter, A., e T. Rienmüller. "Time-harmonic acoustic wave scattering in an ocean with depth-dependent sound speed". Applicable Analysis 95, n.º 5 (21 de maio de 2015): 978–99. http://dx.doi.org/10.1080/00036811.2015.1047831.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

COLTON, DAVID, e PETER MONK. "THE INVERSE SCATTERING PROBLEM FOR TIME-HARMONIC ACOUSTIC WAVES IN A PENETRABLE MEDIUM". Quarterly Journal of Mechanics and Applied Mathematics 40, n.º 2 (1987): 189–212. http://dx.doi.org/10.1093/qjmam/40.2.189.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

COLTON, DAVID, e PETER MONK. "THE INVERSE SCATTERING PROBLEM FOR TIME-HARMONIC ACOUSTIC WAVES IN AN INHOMOGENEOUS MEDIUM". Quarterly Journal of Mechanics and Applied Mathematics 41, n.º 1 (1988): 97–125. http://dx.doi.org/10.1093/qjmam/41.1.97.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Hu, Guanghui, Andrea Mantile, Mourad Sini e Tao Yin. "Direct and inverse time-harmonic elastic scattering from point-like and extended obstacles". Inverse Problems & Imaging 14, n.º 6 (2020): 1025–56. http://dx.doi.org/10.3934/ipi.2020054.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Yang, Zhipeng, Xinping Gui, Ju Ming e Guanghui Hu. "Bayesian approach to inverse time-harmonic acoustic scattering with phaseless far-field data". Inverse Problems 36, n.º 6 (1 de junho de 2020): 065012. http://dx.doi.org/10.1088/1361-6420/ab82ee.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Melamed, T. "Phase-space Green’s functions for modeling time-harmonic scattering from smooth inhomogeneous objects". Journal of Mathematical Physics 45, n.º 6 (junho de 2004): 2232–47. http://dx.doi.org/10.1063/1.1737812.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia