Siga este link para ver outros tipos de publicações sobre o tema: Time gating four wave mixing.

Artigos de revistas sobre o tema "Time gating four wave mixing"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Time gating four wave mixing".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Di Sieno, Laura, Alberto Dalla Mora, Alessandro Torricelli, Lorenzo Spinelli, Rebecca Re, Antonio Pifferi e Davide Contini. "A Versatile Setup for Time-Resolved Functional Near Infrared Spectroscopy Based on Fast-Gated Single-Photon Avalanche Diode and on Four-Wave Mixing Laser". Applied Sciences 9, n.º 11 (10 de junho de 2019): 2366. http://dx.doi.org/10.3390/app9112366.

Texto completo da fonte
Resumo:
In this paper, a time-domain fast gated near-infrared spectroscopy system is presented. The system is composed of a fiber-based laser providing two pulsed sources and two fast gated detectors. The system is characterized on phantoms and was tested in vivo, showing how the gating approach can improve the contrast and contrast-to-noise-ratio for detection of absorption perturbation inside a diffusive medium, regardless of source-detector separation.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Fourkas, John T., Rick Trebino, Mark A. Dugan e M. D. Fayer. "Extra resonances in time-domain four-wave mixing". Optics Letters 18, n.º 10 (15 de maio de 1993): 781. http://dx.doi.org/10.1364/ol.18.000781.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Wegener, M., D. S. Chemla, S. Schmitt-Rink e W. Schäfer. "Line shape of time-resolved four-wave mixing". Physical Review A 42, n.º 9 (1 de novembro de 1990): 5675–83. http://dx.doi.org/10.1103/physreva.42.5675.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Gomes, M. J. M., B. Kippelen, R. Levy, J. B. Grun e B. Hönerlage. "Time-Resolved Four-Wave Mixing Experiments in CuCl". physica status solidi (b) 159, n.º 1 (1 de maio de 1990): 101–6. http://dx.doi.org/10.1002/pssb.2221590111.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Beach, R., D. DeBeer e S. R. Hartmann. "Time-delayed four-wave mixing using intense incoherent light". Physical Review A 32, n.º 6 (1 de dezembro de 1985): 3467–74. http://dx.doi.org/10.1103/physreva.32.3467.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Shalit, Andrey, e Yehiam Prior. "Time resolved polarization dependent single shot four wave mixing". Physical Chemistry Chemical Physics 14, n.º 40 (2012): 13989. http://dx.doi.org/10.1039/c2cp42112g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Belov, M. N., E. A. Manykin e M. A. Selifanov. "Self-consistent theory of time-resolved four-wave mixing". Optics Communications 99, n.º 1-2 (maio de 1993): 101–4. http://dx.doi.org/10.1016/0030-4018(93)90712-e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Kawanishi, S., e O. Kamatani. "All-optical time division multiplexing using four-wave mixing". Electronics Letters 30, n.º 20 (29 de setembro de 1994): 1697–98. http://dx.doi.org/10.1049/el:19941153.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Strait, J., e A. M. Glass. "Time-resolved photorefractive four-wave mixing in semiconductor materials". Journal of the Optical Society of America B 3, n.º 2 (1 de fevereiro de 1986): 342. http://dx.doi.org/10.1364/josab.3.000342.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Meyer, S., e V. Engel. "Non-perturbative wave-packet calculations of time-resolved four-wave-mixing signals". Applied Physics B 71, n.º 3 (setembro de 2000): 293–97. http://dx.doi.org/10.1007/s003400000342.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Wang, Sheng, Xin Dong, Bowen Li e Kenneth K. Y. Wong. "Polarization-independent parametric time magnifier based on four-wave mixing". Optics Letters 46, n.º 22 (8 de novembro de 2021): 5627. http://dx.doi.org/10.1364/ol.438351.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Ma, H., A. S. L. Gomes e Cid B. de Araújo. "Raman-assisted polarization beats in time-delayed four-wave mixing". Optics Letters 17, n.º 15 (1 de agosto de 1992): 1052. http://dx.doi.org/10.1364/ol.17.001052.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Wasak, T., P. Szańkowski, V. V. Konotop e M. Trippenbach. "Four-wave mixing in a parity-time (PT)-symmetric coupler". Optics Letters 40, n.º 22 (9 de novembro de 2015): 5291. http://dx.doi.org/10.1364/ol.40.005291.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Ding, Thomas, Christian Ott, Andreas Kaldun, Alexander Blättermann, Kristina Meyer, Veit Stooss, Marc Rebholz et al. "Time-resolved four-wave-mixing spectroscopy for inner-valence transitions". Optics Letters 41, n.º 4 (5 de fevereiro de 2016): 709. http://dx.doi.org/10.1364/ol.41.000709.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Goldman, Martin V., e Edward A. Williams. "Time‐dependent phase conjugation and four‐wave mixing in plasmas". Physics of Fluids B: Plasma Physics 3, n.º 3 (março de 1991): 751–65. http://dx.doi.org/10.1063/1.859871.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Chow, W. W., R. Indik, A. Knorr, S. W. Koch e J. V. Moloney. "Time-resolved nondegenerate four-wave mixing in a semiconductor amplifier". Physical Review A 52, n.º 3 (1 de setembro de 1995): 2479–82. http://dx.doi.org/10.1103/physreva.52.2479.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Schmitt, M., G. Knopp, A. Materny e W. Kiefer. "Femtosecond time-resolved four-wave mixing spectroscopy in iodine vapour". Chemical Physics Letters 280, n.º 3-4 (dezembro de 1997): 339–47. http://dx.doi.org/10.1016/s0009-2614(97)01139-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Horowitz, Moshe, Daniel Kligler e Baruch Fischer. "Time-dependent behavior of photorefractive two- and four-wave mixing". Journal of the Optical Society of America B 8, n.º 10 (1 de outubro de 1991): 2204. http://dx.doi.org/10.1364/josab.8.002204.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Yu, Sungkyu, Joo In Lee e Annamraju Kasi Viswanath. "Time-resolved four-wave mixing signal in thick bulk GaAs". Journal of Applied Physics 86, n.º 6 (15 de setembro de 1999): 3159–64. http://dx.doi.org/10.1063/1.371183.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Schillak, P., e I. Balslev. "Theory of propagation effects in time-resolved four-wave mixing". Physical Review B 48, n.º 13 (1 de outubro de 1993): 9426–33. http://dx.doi.org/10.1103/physrevb.48.9426.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Villaeys, A. A., e J. P. Lavoine. "Time dependent description of four wave mixing in absorbing media". Optics Communications 63, n.º 5 (setembro de 1987): 349–54. http://dx.doi.org/10.1016/0030-4018(87)90190-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Ja, Y. H. "Real-time optical image differentiation by degenerate four-wave mixing". Applied Physics B Photophysics and Laser Chemistry 36, n.º 1 (janeiro de 1985): 21–24. http://dx.doi.org/10.1007/bf00698032.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Yamaguchi, K., Y. Toda, T. Ishiguro, S. Adachi, K. Hoshino e K. Tadatomo. "Time-resolved four-wave mixing studies of excitons in GaN". physica status solidi (c) 4, n.º 7 (junho de 2007): 2752–55. http://dx.doi.org/10.1002/pssc.200674703.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

MINO, HIROFUMI, AYUMU KOBAYASHI, SHOJIRO TAKEYAMA, GRZEGOSZ KARCZEWSKI, TOMASZ WOJTOWICZ e JACEK KOSSUT. "TRIPLET BIEXCITON TRANSITION UNDER HIGH MAGNETIC FIELD IN (Cd,Mn)Te/CdTe/(Cd,Mg)Te ASYMMETRIC QUANTUM WELLS". International Journal of Modern Physics B 18, n.º 27n29 (30 de novembro de 2004): 3753–56. http://dx.doi.org/10.1142/s0217979204027402.

Texto completo da fonte
Resumo:
Biexciton spin states in a CdMnTe / CdTe / CdMgTe single quantum well have been investigated by means of the time-integrated and the spectrally-resolved four-wave mixing measurements in magnetic fields. Applying magnetic field in a Faraday geometry, the four-wave mixing signal showed a beat like structure at an early delay-time region with a co-circular (σ+,σ+) configuration. The spectrally-resolved four-wave mixing signals indicated an additional transition appeared at 1 meV higher energy side of the exciton resonance. These results were explained well by a magnetic field induced triplet biexciton transition.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

SEGUR, HARVEY. "EXPLOSIVE INSTABILITY DUE TO 3-WAVE OR 4-WAVE MIXING, WITH OR WITHOUT DISSIPATION". Analysis and Applications 06, n.º 04 (outubro de 2008): 413–28. http://dx.doi.org/10.1142/s0219530508001183.

Texto completo da fonte
Resumo:
It is known that an "explosive instability" can occur when nonlinear waves propagate in certain media that admit 3-wave mixing. In that context, three resonantly interacting wavetrains all gain energy from a background source, and all blow up together, in finite time. A recent paper [17] showed that explosive instabilities can occur even in media that admit no 3-wave mixing. Instead, the instability is caused by 4-wave mixing, and results in four resonantly interacting wavetrains all blowing up in finite time. In both cases, the instability occurs in systems with no dissipation. This paper reviews the earlier work, and shows that adding a common form of dissipation to the system, with either 3-wave or 4-wave mixing, provides an effective threshold for blow-up. Only initial data that exceed the respective thresholds blow up in finite time.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Ochoa, Ellen, Lambertus Hesselink e Joseph W. Goodman. "Real-time intensity inversion using two-wave and four-wave mixing in photorefractive Bi_12GeO_20". Applied Optics 24, n.º 12 (15 de junho de 1985): 1826. http://dx.doi.org/10.1364/ao.24.001826.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Yuan Hao, 袁浩, 武保剑 Wu Baojian, 周星宇 Zhou Xingyu e 文峰 Wen Feng. "Equalization and Regeneration of Four-Wave Mixing for Time-Interleaved Channel". Acta Optica Sinica 34, n.º 2 (2014): 0206002. http://dx.doi.org/10.3788/aos201434.0206002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Fourkas, John T., Timothy R. Brewer, Hackjin Kim e M. D. Fayer. "Picosecond time-resolved four-wave mixing experiments in sodium-seeded flames". Optics Letters 16, n.º 3 (1 de fevereiro de 1991): 177. http://dx.doi.org/10.1364/ol.16.000177.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Vemuri, Gautam. "Four-wave mixing with time-delayed, correlated, phase-diffusing optical fields". Physical Review A 48, n.º 4 (1 de outubro de 1993): 3256–64. http://dx.doi.org/10.1103/physreva.48.3256.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Meyer, S., M. Schmitt, A. Materny, W. Kiefer e V. Engel. "Simulation of femtosecond time-resolved four-wave mixing experiments on I2". Chemical Physics Letters 301, n.º 3-4 (fevereiro de 1999): 248–54. http://dx.doi.org/10.1016/s0009-2614(99)00040-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Steffen, Thomas, John T. Fourkas e Koos Duppen. "Time resolved four‐ and six‐wave mixing in liquids. I. Theory". Journal of Chemical Physics 105, n.º 17 (novembro de 1996): 7364–82. http://dx.doi.org/10.1063/1.472594.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Khoury, Jed. "Four-wave mixing real-time intensity filtering with organic photorefractive materials". Optical Engineering 50, n.º 1 (1 de janeiro de 2011): 018201. http://dx.doi.org/10.1117/1.3530048.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Gelin, Maxim F., Dassia Egorova e Wolfgang Domcke. "Efficient Calculation of Time- and Frequency-Resolved Four-Wave-Mixing Signals". Accounts of Chemical Research 42, n.º 9 (15 de setembro de 2009): 1290–98. http://dx.doi.org/10.1021/ar900045d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Klein, Avi, Shir Shahal, Gilad Masri, Hamootal Duadi e Moti Fridman. "Four Wave Mixing-Based Time Lens for Orthogonal Polarized Input Signals". IEEE Photonics Journal 9, n.º 2 (abril de 2017): 1–7. http://dx.doi.org/10.1109/jphot.2017.2690899.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Rozouvan, Stanislav. "Commutative spatial and time symmetry of degenerate four-wave mixing measurements". Journal of the Optical Society of America B 16, n.º 5 (1 de maio de 1999): 768. http://dx.doi.org/10.1364/josab.16.000768.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Schmitt-Rink, Stefan, Shaul Mukamel, Karl Leo, Jagdeep Shah e Daniel S. Chemla. "Stochastic theory of time-resolved four-wave mixing in interacting media". Physical Review A 44, n.º 3 (1 de agosto de 1991): 2124–29. http://dx.doi.org/10.1103/physreva.44.2124.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Meyer, Kent A., John C. Wright e David E. Thompson. "Frequency and Time-Resolved Triply Vibrationally Enhanced Four-Wave Mixing Spectroscopy". Journal of Physical Chemistry A 108, n.º 52 (dezembro de 2004): 11485–93. http://dx.doi.org/10.1021/jp046137j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Grenier, P., D. Houde, S. Jandl e L. A. Boatner. "Measurement of the soft polariton inKTa0.93Nb0.07O3by time-resolved four-wave mixing". Physical Review B 50, n.º 22 (1 de dezembro de 1994): 16295–308. http://dx.doi.org/10.1103/physrevb.50.16295.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Steffen, Thomas, e Koos Duppen. "Time resolved four- and six-wave mixing in liquids. II. Experiments". Journal of Chemical Physics 106, n.º 10 (8 de março de 1997): 3854–64. http://dx.doi.org/10.1063/1.473106.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Wong, C. S., e H. K. Tsang. "Polarization-independent time-division demultiplexing using orthogonal-pumps four-wave mixing". IEEE Photonics Technology Letters 15, n.º 1 (janeiro de 2003): 129–31. http://dx.doi.org/10.1109/lpt.2002.805743.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Shalit, Andrey, Yuri Paskover e Yehiam Prior. "In situ heterodyne detection in femtosecond time resolved four wave mixing". Chemical Physics Letters 450, n.º 4-6 (janeiro de 2008): 408–16. http://dx.doi.org/10.1016/j.cplett.2007.11.027.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Yeh, Pochi, e Arthur E. T. Chiou. "Real-time contrast reversal via four-wave mixing in nonlinear media". Optics Communications 64, n.º 2 (outubro de 1987): 160–62. http://dx.doi.org/10.1016/0030-4018(87)90044-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Göbel, E. O., M. Koch, J. Feldmann, G. von Plessen, T. Meier, A. Schulze, P. Thomas, S. Schmitt-Rink, K. Köhler e K. Ploog. "Time-Resolved Four-Wave Mixing in GaAs/AlAs Quantum Well Structures". physica status solidi (b) 173, n.º 1 (1 de setembro de 1992): 21–30. http://dx.doi.org/10.1002/pssb.2221730103.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Borri, P., W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang e D. Bimberg. "Temperature-Dependent Time-Resolved Four-Wave Mixing in InGaAs Quantum Dots". physica status solidi (a) 190, n.º 2 (abril de 2002): 517–21. http://dx.doi.org/10.1002/1521-396x(200204)190:2<517::aid-pssa517>3.0.co;2-k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Ivakhnik, V. V., e M. V. Savelyev. "Transient four-wave mixing in a transparent two-component medium". Computer Optics 42, n.º 2 (24 de julho de 2018): 227–35. http://dx.doi.org/10.18287/2412-6179-2018-42-2-227-235.

Texto completo da fonte
Resumo:
We analyze changes in the spatial structure of an object wave under four-wave mixing in a transparent two-component medium in schemes with opposing and concurrent pump waves. It is shown that in the spatial spectrum of the object wave there is a dip, whose position is determined by the propagation direction of the second pump wave. Angular rotation and frequency shift of the pump waves lead to a decrease in the conversion efficiency of high spatial frequencies. The bandwidth of the spatial frequencies cut out by the four-wave radiation converter decreases monotonically over time, whereas the bandwidth of the most efficiently converted spatial frequencies increases.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Bencivenga, F., A. Calvi, F. Capotondi, R. Cucini, R. Mincigrucci, A. Simoncig, M. Manfredda et al. "Four-wave-mixing experiments with seeded free electron lasers". Faraday Discussions 194 (2016): 283–303. http://dx.doi.org/10.1039/c6fd00089d.

Texto completo da fonte
Resumo:
The development of free electron laser (FEL) sources has provided an unprecedented bridge between the scientific communities working with ultrafast lasers and extreme ultraviolet (XUV) and X-ray radiation. Indeed, in recent years an increasing number of FEL-based applications have exploited methods and concepts typical of advanced optical approaches. In this context, we recently used a seeded FEL to demonstrate a four-wave-mixing (FWM) process stimulated by coherent XUV radiation, namely the XUV transient grating (X-TG). We hereby report on X-TG measurements carried out on a sample of silicon nitride (Si3N4). The recorded data bears evidence for two distinct signal decay mechanisms: one occurring on a sub-ps timescale and one following slower dynamics extending throughout and beyond the probed timescale range (100 ps). The latter is compatible with a slower relaxation (time decay > ns), that may be interpreted as the signature of thermal diffusion modes. From the peak intensity of the X-TG signal we could estimate a value of the effective third-order susceptibility which is substantially larger than that found in SiO2, so far the only sample with available X-TG data. Furthermore, the intensity of the time-coincidence peak shows a linear dependence on the intensity of the three input beams, indicating that the measurements were performed in the weak field regime. However, the timescale of the ultrafast relaxation exhibits a dependence on the intensity of the XUV radiation. We interpreted the observed behaviour as the generation of a population grating of free-electrons and holes that, on the sub-ps timescale, relaxes to generate lattice excitations. The background free detection inherent to the X-TG approach allowed the determination of FEL-induced electron dynamics with a sensitivity largely exceeding that of transient reflectivity and transmissivity measurements, usually employed for this purpose.
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Zhu, Chang Jun, e Jun Fang He. "Study on Coherent Dynamics of Alkali Metal Atomic Wave Packets". Key Engineering Materials 538 (janeiro de 2013): 285–88. http://dx.doi.org/10.4028/www.scientific.net/kem.538.285.

Texto completo da fonte
Resumo:
A theoretical model consisting of 5 energy levels, with the three upper states coherently excited, was proposed to analyze the coherent characteristics of atomic wave packets using perturbative theory. Pump-probe technique was implemented to detect coupled difference frequency four-wave mixing processes for studying the coherent characteristics of Rb atomic wave packets. Quantum beats were extracted the time domain signal by Fourier transform. Moreover, the variation of quantum beats was gained by time-dependent Fourier transform. The results show that the coherent characteristics of alkali metal atomic wave packets are closely related to quantum beats embedded in the time delayed four-wave mixing signal. Theoretical results are consistent with experimental observations, possessing potential applications in multi-channel information encoding and decoding.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Zhu, Chang Jun, Jun Fang He, Xue Jun Zhai, Bing Xue e Chong Hui Zhang. "Investigation of Quantum Beatings at 608 cm-1 and 70 cm-1 in Rb Vapor". Solid State Phenomena 181-182 (novembro de 2011): 413–16. http://dx.doi.org/10.4028/www.scientific.net/ssp.181-182.413.

Texto completo da fonte
Resumo:
Two coupled axially phase matched parametric four-wave mixings have been achieved in Rb vapor by using broad bandwidth laser pulses. Coherent radiations at 420 nm produced by difference-frequency optical wave mixing processes were detected and a pump-probe scheme was employed to record time varying characteristics of the parametric four-wave mixing signals. Quantum beatings at 608 cm-1 and 70 cm-1 were retrieved from the time varying signals by Fourier transform. Moreover, time dependent Fourier transform was utilized to analyze the dynamics of quantum beatings. The results indicate that two wave packets associated with the two quantum beating frequency components interact strongly and the quantum beating dynamics can be controlled by adjusting Rb number density.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

You, Jian Wei, Zhihao Lan e Nicolae C. Panoiu. "Four-wave mixing of topological edge plasmons in graphene metasurfaces". Science Advances 6, n.º 13 (março de 2020): eaaz3910. http://dx.doi.org/10.1126/sciadv.aaz3910.

Texto completo da fonte
Resumo:
We study topologically protected four-wave mixing (FWM) interactions in a plasmonic metasurface consisting of a periodic array of nanoholes in a graphene sheet, which exhibits a wide topological bandgap at terahertz frequencies upon the breaking of time reversal symmetry by a static magnetic field. We demonstrate that due to the significant nonlinearity enhancement and large life time of graphene plasmons in specific configurations, a net gain of FWM interaction of plasmonic edge states located in the topological bandgap can be achieved with a pump power of less than 10 nW. In particular, we find that the effective nonlinear edge-waveguide coefficient is about γ ≃ 1.1 × 1013 W−1 m−1, i.e., more than 10 orders of magnitude larger than that of commonly used, highly nonlinear silicon photonic nanowires. These findings could pave a new way for developing ultralow-power-consumption, highly integrated, and robust active photonic systems at deep-subwavelength scale for applications in quantum communications and information processing.
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Kim, Dai-Sik, Jagdeep Shah, J. E. Cunningham, T. C. Damen, Wilfried Schäfer, Michael Hartmann e Stefan Schmitt-Rink. "Giant excitonic resonance in time-resolved four-wave mixing in quantum wells". Physical Review Letters 68, n.º 7 (17 de fevereiro de 1992): 1006–9. http://dx.doi.org/10.1103/physrevlett.68.1006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia