Artigos de revistas sobre o tema "Time-Aware LSTM"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Time-Aware LSTM".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Cheng, Lin, Yuliang Shi, Kun Zhang, Xinjun Wang e Zhiyong Chen. "GGATB-LSTM: Grouping and Global Attention-based Time-aware Bidirectional LSTM Medical Treatment Behavior Prediction". ACM Transactions on Knowledge Discovery from Data 15, n.º 3 (maio de 2021): 1–16. http://dx.doi.org/10.1145/3441454.
Texto completo da fonteWiessner, Paul, Grigor Bezirganyan, Sana Sellami, Richard Chbeir e Hans-Joachim Bungartz. "Uncertainty-Aware Time Series Anomaly Detection". Future Internet 16, n.º 11 (31 de outubro de 2024): 403. http://dx.doi.org/10.3390/fi16110403.
Texto completo da fonteYadulla, Akhila Reddy, Mounica Yenugula, Vinay Kumar Kasula, Bhargavi Konda, Santosh Reddy Addula e Sarath Babu Rakki. "A time-aware LSTM model for detecting criminal activities in blockchain transactions". International Journal of Communication and Information Technology 4, n.º 2 (1 de julho de 2023): 33–39. https://doi.org/10.33545/2707661x.2023.v4.i2a.108.
Texto completo da fonteYang, Xuan, e James A. Esquivel. "Time-Aware LSTM Neural Networks for Dynamic Personalized Recommendation on Business Intelligence". Tsinghua Science and Technology 29, n.º 1 (fevereiro de 2024): 185–96. http://dx.doi.org/10.26599/tst.2023.9010025.
Texto completo da fonteChen, Long, Zhiyao Tian, Shunhua Zhou, Quanmei Gong e Honggui Di. "Attitude deviation prediction of shield tunneling machine using Time-Aware LSTM networks". Transportation Geotechnics 45 (março de 2024): 101195. http://dx.doi.org/10.1016/j.trgeo.2024.101195.
Texto completo da fonteChen, Jie, Chang Liu, Jiawu Xie, Jie An e Nan Huang. "Time–Frequency Mask-Aware Bidirectional LSTM: A Deep Learning Approach for Underwater Acoustic Signal Separation". Sensors 22, n.º 15 (26 de julho de 2022): 5598. http://dx.doi.org/10.3390/s22155598.
Texto completo da fonteZhang, Jinkai, Wenming Ma, En Zhang e Xuchen Xia. "Time-Aware Dual LSTM Neural Network with Similarity Graph Learning for Remote Sensing Service Recommendation". Sensors 24, n.º 4 (11 de fevereiro de 2024): 1185. http://dx.doi.org/10.3390/s24041185.
Texto completo da fonteZheng, Ruixuan, Yanping Bao, Lihua Zhao e Lidong Xing. "Prediction of steelmaking process variables using K-medoids and a time-aware LSTM network". Heliyon 10, n.º 12 (junho de 2024): e32901. http://dx.doi.org/10.1016/j.heliyon.2024.e32901.
Texto completo da fonteSubapriya Vijayakumar e Rajaprakash Singaravelu. "Time Aware Long Short-Term Memory and Kronecker Gated Intelligent Transportation for Smart Car Parking". Journal of Advanced Research in Applied Sciences and Engineering Technology 44, n.º 1 (26 de abril de 2024): 134–50. http://dx.doi.org/10.37934/araset.44.1.134150.
Texto completo da fonteGui, Zhipeng, Yunzeng Sun, Le Yang, Dehua Peng, Fa Li, Huayi Wu, Chi Guo, Wenfei Guo e Jianya Gong. "LSI-LSTM: An attention-aware LSTM for real-time driving destination prediction by considering location semantics and location importance of trajectory points". Neurocomputing 440 (junho de 2021): 72–88. http://dx.doi.org/10.1016/j.neucom.2021.01.067.
Texto completo da fonteLees, Thomas, Marcus Buechel, Bailey Anderson, Louise Slater, Steven Reece, Gemma Coxon e Simon J. Dadson. "Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models". Hydrology and Earth System Sciences 25, n.º 10 (21 de outubro de 2021): 5517–34. http://dx.doi.org/10.5194/hess-25-5517-2021.
Texto completo da fonteAnan, Muhammad, Khalid Kanaan, Driss Benhaddou, Nidal Nasser, Basheer Qolomany, Hanaa Talei e Ahmad Sawalmeh. "Occupant-Aware Energy Consumption Prediction in Smart Buildings Using a LSTM Model and Time Series Data". Energies 17, n.º 24 (21 de dezembro de 2024): 6451. https://doi.org/10.3390/en17246451.
Texto completo da fontePark, Hyun Joon, Min Seok Lee, Dong Il Park e Sung Won Han. "Time-Aware and Feature Similarity Self-Attention in Vessel Fuel Consumption Prediction". Applied Sciences 11, n.º 23 (4 de dezembro de 2021): 11514. http://dx.doi.org/10.3390/app112311514.
Texto completo da fonteZhang, Jiangnan, Hai Wang, Fengjuan Cui, Yongshuo Liu, Zhenxing Liu e Junyu Dong. "Research into Ship Trajectory Prediction Based on An Improved LSTM Network". Journal of Marine Science and Engineering 11, n.º 7 (22 de junho de 2023): 1268. http://dx.doi.org/10.3390/jmse11071268.
Texto completo da fonteKim, Jonghong, Inchul Choi e Minho Lee. "Context Aware Video Caption Generation with Consecutive Differentiable Neural Computer". Electronics 9, n.º 7 (17 de julho de 2020): 1162. http://dx.doi.org/10.3390/electronics9071162.
Texto completo da fonteNg, Yu Nie, Han Ying Lim, Ying Chyi Cham, Mohd Aftar Abu Bakar e Noratiqah Mohd Ariff. "Comparison Between LSTM, GRU and VARIMA in Forecasting of Air Quality Time Series Data". Malaysian Journal of Fundamental and Applied Sciences 20, n.º 6 (16 de dezembro de 2024): 1248–60. https://doi.org/10.11113/mjfas.v20n6.3411.
Texto completo da fonteYuan, Xiaofeng, Lin Li, Kai Wang e Yalin Wang. "Sampling-Interval-Aware LSTM for Industrial Process Soft Sensing of Dynamic Time Sequences With Irregular Sampling Measurements". IEEE Sensors Journal 21, n.º 9 (1 de maio de 2021): 10787–95. http://dx.doi.org/10.1109/jsen.2021.3056210.
Texto completo da fonteOzpinar, Alper, e Arma Deger Mut. "Multidimensional Next-Generation Time and Transition-Aware Product Recommendation System". European Journal of Research and Development 4, n.º 2 (31 de maio de 2024): 229–46. http://dx.doi.org/10.56038/ejrnd.v4i2.458.
Texto completo da fonteKratzert, Frederik, Daniel Klotz, Guy Shalev, Günter Klambauer, Sepp Hochreiter e Grey Nearing. "Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets". Hydrology and Earth System Sciences 23, n.º 12 (17 de dezembro de 2019): 5089–110. http://dx.doi.org/10.5194/hess-23-5089-2019.
Texto completo da fonteZhang, Jiajun. "Time Series Analysis of Greenhouse Gas Emission Based on ARIMA and LSTM". Highlights in Science, Engineering and Technology 76 (31 de dezembro de 2023): 378–84. http://dx.doi.org/10.54097/zy49qb44.
Texto completo da fontePalanichamy, Indurani, e Firdaus Begam Basheer Ahamed. "Prediction of Seizure in the EEG Signal with Time Aware Recurrent Neural Network". Revue d'Intelligence Artificielle 36, n.º 5 (23 de dezembro de 2022): 717–24. http://dx.doi.org/10.18280/ria.360508.
Texto completo da fonteYuan, Yuan, Yuying Zhou, Xuanyou Chen, Qi Xiong e Hector Chimeremeze Okere. "Enhancing Recommendation Diversity and Novelty with Bi-LSTM and Mean Shift Clustering". Electronics 13, n.º 19 (28 de setembro de 2024): 3841. http://dx.doi.org/10.3390/electronics13193841.
Texto completo da fonteMehta, Amiben Maheshbhai, e Kajal S. Patel. "LSTM-based Forecasting of Dengue Cases in Gujarat: A Machine Learning Approach". Indian Journal Of Science And Technology 17, n.º 7 (15 de fevereiro de 2024): 635–42. http://dx.doi.org/10.17485/ijst/v17i7.2748.
Texto completo da fonteYaprakdal, Fatma, e Merve Varol Arısoy. "A Multivariate Time Series Analysis of Electrical Load Forecasting Based on a Hybrid Feature Selection Approach and Explainable Deep Learning". Applied Sciences 13, n.º 23 (4 de dezembro de 2023): 12946. http://dx.doi.org/10.3390/app132312946.
Texto completo da fonteWang, Yakun, Yajun Du, Jinrong Hu, Xianyong Li e Xiaoliang Chen. "SAEP: A Surrounding-Aware Individual Emotion Prediction Model Combined with T-LSTM and Memory Attention Mechanism". Applied Sciences 11, n.º 23 (23 de novembro de 2021): 11111. http://dx.doi.org/10.3390/app112311111.
Texto completo da fontePan, Feng, Bingyao Huang, Chunhong Zhang, Xinning Zhu, Zhenyu Wu, Moyu Zhang, Yang Ji, Zhanfei Ma e Zhengchen Li. "A survival analysis based volatility and sparsity modeling network for student dropout prediction". PLOS ONE 17, n.º 5 (5 de maio de 2022): e0267138. http://dx.doi.org/10.1371/journal.pone.0267138.
Texto completo da fontePuchała, Sebastian, Włodzimierz Kasprzak e Paweł Piwowarski. "Human Interaction Classification in Sliding Video Windows Using Skeleton Data Tracking and Feature Extraction". Sensors 23, n.º 14 (10 de julho de 2023): 6279. http://dx.doi.org/10.3390/s23146279.
Texto completo da fonteAlam, Kazi Nabiul, Md Shakib Khan, Abdur Rab Dhruba, Mohammad Monirujjaman Khan, Jehad F. Al-Amri, Mehedi Masud e Majdi Rawashdeh. "Deep Learning-Based Sentiment Analysis of COVID-19 Vaccination Responses from Twitter Data". Computational and Mathematical Methods in Medicine 2021 (2 de dezembro de 2021): 1–15. http://dx.doi.org/10.1155/2021/4321131.
Texto completo da fonteFaudzi, A. A. M., M. M. Raslan e N. E. Alias. "IoT based real-time monitoring system of rainfall and water level for flood prediction using LSTM Network". IOP Conference Series: Earth and Environmental Science 1143, n.º 1 (1 de fevereiro de 2023): 012015. http://dx.doi.org/10.1088/1755-1315/1143/1/012015.
Texto completo da fonteNi, Xiang, Jing Li, Mo Yu, Wang Zhou e Kun-Lung Wu. "Generalizable Resource Allocation in Stream Processing via Deep Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 01 (3 de abril de 2020): 857–64. http://dx.doi.org/10.1609/aaai.v34i01.5431.
Texto completo da fonteAlsaedi, Faisal, e Sara Masoud. "Condition-Based Maintenance for Degradation-Aware Control Systems in Continuous Manufacturing". Machines 13, n.º 2 (12 de fevereiro de 2025): 141. https://doi.org/10.3390/machines13020141.
Texto completo da fonteTam, Prohim, Seungwoo Kang, Seyha Ros e Seokhoon Kim. "Enhancing QoS with LSTM-Based Prediction for Congestion-Aware Aggregation Scheduling in Edge Federated Learning". Electronics 12, n.º 17 (27 de agosto de 2023): 3615. http://dx.doi.org/10.3390/electronics12173615.
Texto completo da fonteAbdullah, Hazem salim. "A comparison of several intrusion detection methods using the NSL-KDD dataset". Wasit Journal of Computer and Mathematics Science 3, n.º 2 (30 de junho de 2024): 32–41. http://dx.doi.org/10.31185/wjcms.251.
Texto completo da fonteYang, Hui, e Changchun Yang. "TIGNN-RL: Enabling time-sensitive and context-aware intelligent decision-making with dynamic graphs in recommender systems and biomechanics knowledge". Molecular & Cellular Biomechanics 22, n.º 3 (13 de fevereiro de 2025): 1339. https://doi.org/10.62617/mcb1339.
Texto completo da fonteIbnu Sina, Muhammad Noer, e Erwin Budi Setiawan. "Stock Price Correlation Analysis with Twitter Sentiment Analysis Using The CNN-LSTM Method". sinkron 8, n.º 4 (1 de outubro de 2023): 2190–202. http://dx.doi.org/10.33395/sinkron.v8i4.12855.
Texto completo da fonteCayme, Karl Jensen, Vince Andrei Retutal, Miguel Edwin Salubre, Philip Virgil Astillo, Luis Gerardo Cañete e Gaurav Choudhary. "Gesture Recognition of Filipino Sign Language Using Convolutional and Long Short-Term Memory Deep Neural Networks". Knowledge 4, n.º 3 (8 de julho de 2024): 358–81. http://dx.doi.org/10.3390/knowledge4030020.
Texto completo da fonteIslam, Muhammad Zubair, A. S. M. Sharifuzzaman Sagar e Hyung Seok Kim. "Enabling Pandemic-Resilient Healthcare: Edge-Computing-Assisted Real-Time Elderly Caring Monitoring System". Applied Sciences 14, n.º 18 (20 de setembro de 2024): 8486. http://dx.doi.org/10.3390/app14188486.
Texto completo da fonteLi, Bing, Wei Cui, Wei Wang, Le Zhang, Zhenghua Chen e Min Wu. "Two-Stream Convolution Augmented Transformer for Human Activity Recognition". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 1 (18 de maio de 2021): 286–93. http://dx.doi.org/10.1609/aaai.v35i1.16103.
Texto completo da fonteNam, Seung-Joo, Gwiseong Moon, Jung-Hwan Park, Yoon Kim, Yun Jeong Lim e Hyun-Soo Choi. "Deep Learning-Based Real-Time Organ Localization and Transit Time Estimation in Wireless Capsule Endoscopy". Biomedicines 12, n.º 8 (31 de julho de 2024): 1704. http://dx.doi.org/10.3390/biomedicines12081704.
Texto completo da fonteWang, Ziteng, Junfeng Li e Yonghong Yan. "Target Speaker Localization Based on the Complex Watson Mixture Model and Time-Frequency Selection Neural Network". Applied Sciences 8, n.º 11 (21 de novembro de 2018): 2326. http://dx.doi.org/10.3390/app8112326.
Texto completo da fonteNair, Biji, e S. Mary Saira Bhanu. "Task Scheduling in Fog Node within the Tactical Cloud". Defence Science Journal 72, n.º 1 (5 de janeiro de 2022): 49–55. http://dx.doi.org/10.14429/dsj.72.17039.
Texto completo da fonteLu, Tong, Sizu Hou e Yan Xu. "Ultra-Short-Term Load Forecasting for Customer-Level Integrated Energy Systems Based on Composite VTDS Models". Processes 11, n.º 8 (16 de agosto de 2023): 2461. http://dx.doi.org/10.3390/pr11082461.
Texto completo da fontePandey, Neeraj Kumar, Manoj Diwakar, Achyut Shankar, Prabhishek Singh, Mohammad R. Khosravi e Vivek Kumar. "Energy Efficiency Strategy for Big Data in Cloud Environment Using Deep Reinforcement Learning". Mobile Information Systems 2022 (11 de agosto de 2022): 1–11. http://dx.doi.org/10.1155/2022/8716132.
Texto completo da fonteXue, Mingfu, Junyu Zhu, Rusheng Wu, Xiayiwei Zhang e Yuan Chen. "BRP-Net: A discrete-aware network based on attention mechanisms and LSTM for birth rate prediction in prefecture-level cities". PLOS ONE 19, n.º 9 (12 de setembro de 2024): e0307721. http://dx.doi.org/10.1371/journal.pone.0307721.
Texto completo da fonteDash, Debadatta, Paul Ferrari, Satwik Dutta e Jun Wang. "NeuroVAD: Real-Time Voice Activity Detection from Non-Invasive Neuromagnetic Signals". Sensors 20, n.º 8 (16 de abril de 2020): 2248. http://dx.doi.org/10.3390/s20082248.
Texto completo da fonteSidhu, Kamaljeet Kaur, Habeeb Balogun e Kazeem Oluwakemi Oseni. ""Predictive Modelling of Air Quality Index (AQI) Across Diverse Cities and States of India using Machine Learning: Investigating the Influence of Punjab's Stubble Burning on AQI Variability"". International Journal of Managing Information Technology 16, n.º 1 (28 de fevereiro de 2024): 15–35. http://dx.doi.org/10.5121/ijmit.2024.16102.
Texto completo da fonteTariq, Usman. "Optimized Feature Selection for DDoS Attack Recognition and Mitigation in SD-VANETs". World Electric Vehicle Journal 15, n.º 9 (28 de agosto de 2024): 395. http://dx.doi.org/10.3390/wevj15090395.
Texto completo da fonteWang, Chunli, Linming Xu, Hongxin Zhu e Xiaoyang Cheng. "Robustness study of speaker recognition based on ECAPA-TDNN-CIFG". Journal of Computational Methods in Sciences and Engineering 24, n.º 4-5 (14 de agosto de 2024): 3287–96. http://dx.doi.org/10.3233/jcm-247581.
Texto completo da fonteKamal, Saurabh, Sahil Sharma, Vijay Kumar, Hammam Alshazly, Hany S. Hussein e Thomas Martinetz. "Trading Stocks Based on Financial News Using Attention Mechanism". Mathematics 10, n.º 12 (10 de junho de 2022): 2001. http://dx.doi.org/10.3390/math10122001.
Texto completo da fonteDo, Nhu-Tai, Soo-Hyung Kim, Hyung-Jeong Yang, Guee-Sang Lee e Soonja Yeom. "Context-Aware Emotion Recognition in the Wild Using Spatio-Temporal and Temporal-Pyramid Models". Sensors 21, n.º 7 (27 de março de 2021): 2344. http://dx.doi.org/10.3390/s21072344.
Texto completo da fonte