Artigos de revistas sobre o tema "Timber composite"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Timber composite".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Sandhyavitri, Ari, Fakhri Fakhri, Rizki Ramadhan Husaini, Indra Kuswoyo e Manyuk Fauzi. "Added values of the local timbers materials for main bridge frame structures utilizing laminating composites technology". Journal of Applied Materials and Technology 2, n.º 1 (4 de dezembro de 2020): 50–58. http://dx.doi.org/10.31258/jamt.2.1.50-58.
Texto completo da fonteBuyuktaskin, Halet Almila Arda, Mehmet Serkan Yatagan, Gulseren Erol Soyoz, Leyla Tanacan e Morvarid Dilmaghani. "EXPERIMENTAL INVESTIGATION OF THE DURABILITY OF LOAD BEARING TIMBER-GLASS COMPOSITES UNDER THE EFFECTS OF ACCELERATED AGING". Journal of Green Building 14, n.º 2 (março de 2019): 45–59. http://dx.doi.org/10.3992/1943-4618.14.2.45.
Texto completo da fonteSoalih, Hussien Alkasim, e Serhat Demir. "Current practice and recent developments of shear connectors for timber concrete composite applications: A state of the art review". Journal of Structural Engineering & Applied Mechanics 6, n.º 5 (31 de dezembro de 2023): 422–40. http://dx.doi.org/10.31462/jseam.2023.05422440.
Texto completo da fonteXie, Lan, Guojing He, Xiaodong (Alice) Wang, Xiao Tang e Roberto Crocetti. "Hysteretic performance of angle steel connections in a timber-concrete composite system". BioResources 17, n.º 1 (5 de janeiro de 2022): 1270–84. http://dx.doi.org/10.15376/biores.17.1.1270-1284.
Texto completo da fonteSenashov, Sergey I., Irina L. Savostyanova e Alexander N. Yakhno. "Bending of composite timber". Siberian Aerospace Journal 25, n.º 1 (29 de julho de 2024): 25–32. http://dx.doi.org/10.31772/2712-8970-2024-25-1-25-32.
Texto completo da fonteUtkin, V. A., e I. I. Gotovtsev. "CRESTED SHEAR CONNECTORS APPLICATION TO COMBINE REINFORCED CONCRETE SLAB AND PLANK-NAILED STRUCTURE OF BRIDGE SPAN". Russian Automobile and Highway Industry Journal 17, n.º 3 (22 de julho de 2020): 414–27. http://dx.doi.org/10.26518/2071-7296-2020-17-3-414-427.
Texto completo da fonteCeccotti, Ario. "Composite concrete-timber structures". Progress in Structural Engineering and Materials 4, n.º 3 (2002): 264–75. http://dx.doi.org/10.1002/pse.126.
Texto completo da fonteBuka-Vaivade, Karina, Dmitrijs Serdjuks e Leonids Pakrastins. "Cost Factor Analysis for Timber–Concrete Composite with a Lightweight Plywood Rib Floor Panel". Buildings 12, n.º 6 (3 de junho de 2022): 761. http://dx.doi.org/10.3390/buildings12060761.
Texto completo da fonteOwens, Frank C., R. Daniel Seale e Rubin Shmulsky. "Strength and stiffness of 8-inch deep mixed hardwood composite timber mats". BioResources 15, n.º 2 (17 de fevereiro de 2020): 2495–500. http://dx.doi.org/10.15376/biores.15.2.2495-2500.
Texto completo da fonteMlote, Doreen Steven, e Michael Budig. "Load-Bearing Capacities and Pseudo-Ductility of Carbon Fiber-Reinforced New Zealand Pine Timber Beams". Journal of Composites Science 6, n.º 8 (15 de agosto de 2022): 239. http://dx.doi.org/10.3390/jcs6080239.
Texto completo da fonteBuka-Vaivade, Karina, Dmitrijs Serdjuks, Andrejs Podkoritovs, Leonids Pakrastins e Viktors Mironovs. "RIGID CONNECTION WITH GRANITE CHIPS IN THE TIMBER-CONCRETE COMPOSITE". ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference 3 (16 de junho de 2021): 36–39. http://dx.doi.org/10.17770/etr2021vol3.6552.
Texto completo da fonteHaiman, Miljenko, e Nenad Turčić. "Timber-Lightweight Aggregate Composite Floor Structure". Materials Science Forum 730-732 (novembro de 2012): 486–91. http://dx.doi.org/10.4028/www.scientific.net/msf.730-732.486.
Texto completo da fonteHolý, Milan, e Lukáš Vráblík. "The Timber-Precast UHPC Composite Connection". Solid State Phenomena 272 (fevereiro de 2018): 21–27. http://dx.doi.org/10.4028/www.scientific.net/ssp.272.21.
Texto completo da fonteHammad, M. W., H. R. Valipour, T. Ghanbari-Ghazijahani e M. A. Bradford. "Timber-timber composite (TTC) beams subjected to hogging moment". Construction and Building Materials 321 (fevereiro de 2022): 126295. http://dx.doi.org/10.1016/j.conbuildmat.2021.126295.
Texto completo da fonteShi, Benkai, Xuesong Zhou, Haotian Tao, Huifeng Yang e Bo Wen. "Long-Term Behavior of Timber–Concrete Composite Structures: A Literature Review on Experimental and Numerical Investigations". Buildings 14, n.º 6 (12 de junho de 2024): 1770. http://dx.doi.org/10.3390/buildings14061770.
Texto completo da fonteStojic, Dragoslav, e Toma Kajganovic. "Composite timber-concrete road bridge structure". Facta universitatis - series: Architecture and Civil Engineering 5, n.º 2 (2007): 141–48. http://dx.doi.org/10.2298/fuace0702141s.
Texto completo da fonteChybiński, Marcin, e Łukasz Polus. "Structural Behaviour of Aluminium–Timber Composite Beams with Partial Shear Connections". Applied Sciences 13, n.º 3 (27 de janeiro de 2023): 1603. http://dx.doi.org/10.3390/app13031603.
Texto completo da fonteBattles, Eoin P., Habib J. Dagher e Beckry Abdel-Magid. "Durability of Composite Reinforcement for Timber Bridges". Transportation Research Record: Journal of the Transportation Research Board 1696, n.º 1 (janeiro de 2000): 131–35. http://dx.doi.org/10.3141/1696-54.
Texto completo da fonteRadford, D. W., D. Van Goethem, R. M. Gutkowski e M. L. Peterson. "Composite repair of timber structures". Construction and Building Materials 16, n.º 7 (outubro de 2002): 417–25. http://dx.doi.org/10.1016/s0950-0618(02)00044-2.
Texto completo da fonteMeierhofer, Ulrich. "A Timber/Concrete Composite System". Structural Engineering International 3, n.º 2 (maio de 1993): 104–7. http://dx.doi.org/10.2749/101686693780612529.
Texto completo da fonteSartori, T., e R. Crocetti. "Prefabricated timber-concrete composite floors". European Journal of Wood and Wood Products 74, n.º 3 (1 de fevereiro de 2016): 483–85. http://dx.doi.org/10.1007/s00107-016-1007-4.
Texto completo da fonteBriuka, Elza, Dmitrijs Serdjuks, Pavel Akishin, Genadijs Sahmenko, Andrejs Podkoritovs e Raimonds Ozolins. "Behaviour Analysis of Beam-Type Timber and Timber-Concrete Composite Panels". Applied Sciences 14, n.º 16 (22 de agosto de 2024): 7403. http://dx.doi.org/10.3390/app14167403.
Texto completo da fonteFujita, Masanori, Micha Kubota, Yuki Okoshi e Mamoru Iwata. "CO2 Fixation Using a Composite Steel Timber Structure". Advanced Materials Research 838-841 (novembro de 2013): 381–87. http://dx.doi.org/10.4028/www.scientific.net/amr.838-841.381.
Texto completo da fonteJohns, Kenneth C., e Simon Lacroix. "Composite reinforcement of timber in bending". Canadian Journal of Civil Engineering 27, n.º 5 (1 de outubro de 2000): 899–906. http://dx.doi.org/10.1139/l00-017.
Texto completo da fonteBajzecerová, Viktória, Ján Kanócz, Eva Kormaníková, Viktor Karľa, Peter Orolin e František Vranay. "Normal stress distribution of timber-concrete composite panels with an adhesive shear connection under thermal and humidity loadings". BioResources 16, n.º 3 (13 de maio de 2021): 4862–75. http://dx.doi.org/10.15376/biores.16.3.4862-4875.
Texto completo da fonteDu, Hao, Xiamin Hu, Zhixiang Sun e Weijie Fu. "Shear stiffness of inclined screws in timber–concrete composite beam with timber board interlayer". Advances in Structural Engineering 23, n.º 16 (15 de julho de 2020): 3555–65. http://dx.doi.org/10.1177/1369433220940814.
Texto completo da fonteSzumigała, Maciej, Ewa Szumigała e Łukasz Polus. "An Analysis of the Load-Bearing Capacity of Timber-Concrete Composite Beams with Profiled Sheeting". Civil and Environmental Engineering Reports 27, n.º 4 (20 de dezembro de 2017): 143–56. http://dx.doi.org/10.1515/ceer-2017-0057.
Texto completo da fonteStrzelecka, Julia, Łukasz Polus e Marcin Chybiński. "Theoretical and Numerical Analyses of Steel-timber Composite Beams with LVL Slabs". Civil and Environmental Engineering Reports 33, n.º 2 (27 de setembro de 2023): 64–84. http://dx.doi.org/10.59440/ceer/172510.
Texto completo da fonteDu, Hao, Xiamin Hu, Yuchen Jiang, Chenyu Wei e Wan Hong. "Load-carrying capacity of self-tapping lag screws for glulam-lightweight concrete composite beams". BioResources 14, n.º 1 (14 de novembro de 2018): 166–79. http://dx.doi.org/10.15376/biores.14.1.166-179.
Texto completo da fonteWang, Siya, Jing Li, Zeyu Li, Yanjia Wang e Ying Xu. "Research on in-plane lateral performance of a new-type composite timber wall panel with cold-formed steel frames". MATEC Web of Conferences 275 (2019): 01017. http://dx.doi.org/10.1051/matecconf/201927501017.
Texto completo da fonteAbd Ghafar, N. H., H. Mohd Ikhsan, NZ Abd Aziz, D. Yeoh, HB Koh e T. N. Tuan Chik. "Walking test on Glulam-concrete composite floor". IOP Conference Series: Earth and Environmental Science 1205, n.º 1 (1 de junho de 2023): 012045. http://dx.doi.org/10.1088/1755-1315/1205/1/012045.
Texto completo da fonteKoval, P. S., A. G. Chernykh, E. V. Danilov, V. I. Klevan e V. V. Belov. "Regarding the performance of composite metal and timber I-beams with a wall of corrugated steel sheet and belts of laminated veneer lumber". Вестник гражданских инженеров 19, n.º 6 (2022): 5–9. http://dx.doi.org/10.23968/1999-5571-2022-19-6-5-9.
Texto completo da fonteHolschemacher, Klaus, e Hubertus Kieslich. "Retrofitting of Timber Beam Ceilings with the Timber-Concrete Composite Construction". Advanced Materials Research 133-134 (outubro de 2010): 1095–100. http://dx.doi.org/10.4028/www.scientific.net/amr.133-134.1095.
Texto completo da fonteFujita, Masanori, e Mamoru Iwata. "Bending Test of the Composite Steel-Timber Beam". Applied Mechanics and Materials 351-352 (agosto de 2013): 415–21. http://dx.doi.org/10.4028/www.scientific.net/amm.351-352.415.
Texto completo da fonteGilbert, Benoit P., Hong Guan, Tuan Ngo e Alex Remennikov. "Shear performance of glued and screwed timber-steel composite connections for composite timber-steel beams". Construction and Building Materials 450 (novembro de 2024): 138762. http://dx.doi.org/10.1016/j.conbuildmat.2024.138762.
Texto completo da fonteAbramowicz, Małgorzata, Marcin Chybiński, Łukasz Polus, Piotr Szewczyk e Tomasz Wróblewski. "Dynamic Response of Steel–Timber Composite Beams with Varying Screw Spacing". Sustainability 16, n.º 9 (26 de abril de 2024): 3654. http://dx.doi.org/10.3390/su16093654.
Texto completo da fonteBuka-Vaivade, K., D. Serdjuks, D. Zvirina e L. Pakrastins. "Experimental analysis of timber-concrete composite behaviour with synthetic fibres". Journal of Physics: Conference Series 2423, n.º 1 (1 de janeiro de 2023): 012014. http://dx.doi.org/10.1088/1742-6596/2423/1/012014.
Texto completo da fonteBuka-Vaivade, Karina, Liga Gaile, Dmitrijs Serdjuks, Aleksejs Tatarinovs e Leonids Pakrastins. "Non-Destructive Quality Control of the Adhesive Rigid Timber-to-Concrete Connection in TCC Structures". Buildings 12, n.º 12 (6 de dezembro de 2022): 2151. http://dx.doi.org/10.3390/buildings12122151.
Texto completo da fonteDackermann, Ulrike, Jian Chun Li, Rajendra Rijal e Bijan Samali. "A Vibration-Based Approach for the Estimation of the Loss of Composite Action in Timber Composite Systems". Advanced Materials Research 778 (setembro de 2013): 462–69. http://dx.doi.org/10.4028/www.scientific.net/amr.778.462.
Texto completo da fonteStojic, Dragoslav, e Radovan Cvetkovic. "Design of connections in composite timber-concrete structures". Facta universitatis - series: Architecture and Civil Engineering 4, n.º 2 (2006): 127–38. http://dx.doi.org/10.2298/fuace0602127s.
Texto completo da fonteKuklík, Petr, Anna Kuklíková e Anna Gregorová. "Timber-Concrete Composite Structures with Semi-Rigid Connections". Key Engineering Materials 677 (janeiro de 2016): 282–87. http://dx.doi.org/10.4028/www.scientific.net/kem.677.282.
Texto completo da fonteRossi, A., A. Javadian, I. Acosta, E. Özdemir, N. Nolte, N. Saeidi, A. Dwan et al. "HOME: Wood-Mycelium Composites for CO2-Neutral, Circular Interior Construction and Fittings". IOP Conference Series: Earth and Environmental Science 1078, n.º 1 (1 de setembro de 2022): 012068. http://dx.doi.org/10.1088/1755-1315/1078/1/012068.
Texto completo da fonteLewis, Miles. "Composite Vernacular Constructions". Built Heritage 3, n.º 4 (dezembro de 2019): 26–40. http://dx.doi.org/10.1186/bf03545717.
Texto completo da fonteWinandy, Jerrold E. "Advanced Wood- and Bio-Composites: Enhanced Performance and Sustainability". Advanced Materials Research 29-30 (novembro de 2007): 9–14. http://dx.doi.org/10.4028/www.scientific.net/amr.29-30.9.
Texto completo da fonteAuclair, Samuel C., Luca Sorelli e Alexander Salenikovich. "A new composite connector for timber-concrete composite structures". Construction and Building Materials 112 (junho de 2016): 84–92. http://dx.doi.org/10.1016/j.conbuildmat.2016.02.025.
Texto completo da fonteNie, Yatong, Amir Karimi-Nobandegani e Hamid R. Valipour. "Experimental behaviour and numerical modelling of timber-timber composite (TTC) joints". Construction and Building Materials 290 (julho de 2021): 123273. http://dx.doi.org/10.1016/j.conbuildmat.2021.123273.
Texto completo da fonteMushina, Jalal, NorHayati Abd Ghafar, David Yeoh, Wissam Mushina e Koh Heng Boon. "Vibration Behaviour of Natural Timber and Timber Concrete Composite Deck System". IOP Conference Series: Materials Science and Engineering 713 (3 de janeiro de 2020): 012023. http://dx.doi.org/10.1088/1757-899x/713/1/012023.
Texto completo da fonteGiongo, Ivan, Gianni Schiro e Daniele Riccadonna. "Innovative pre-stressing and cambering of timber-to-timber composite beams". Composite Structures 226 (outubro de 2019): 111195. http://dx.doi.org/10.1016/j.compstruct.2019.111195.
Texto completo da fonteGiongo, Ivan, Gianni Schiro, Kevin Walsh e Daniele Riccadonna. "Experimental testing of pre-stressed timber-to-timber composite (TTC) floors". Engineering Structures 201 (dezembro de 2019): 109808. http://dx.doi.org/10.1016/j.engstruct.2019.109808.
Texto completo da fonteHolý, Milan, David Čítek, Petr Tej e Lukáš Vráblík. "The Experimental Timber–UHPC Composite Bridge". Sustainability 13, n.º 9 (27 de abril de 2021): 4895. http://dx.doi.org/10.3390/su13094895.
Texto completo da fonte