Artigos de revistas sobre o tema "Thermo-osmosis"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Thermo-osmosis".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Chen, Weiqiang, Majid Sedighi e Andrey P. Jivkov. "Thermo-osmosis in silica nanochannels". Japanese Geotechnical Society Special Publication 9, n.º 5 (12 de outubro de 2021): 210–14. http://dx.doi.org/10.3208/jgssp.v09.cpeg150.
Texto completo da fonteZhai, Xinle, e Kamelia Atefi-Monfared. "Impact of local thermal non-equilibrium on temporal thermo-hydro-mechanical processes in low permeable porous media". E3S Web of Conferences 205 (2020): 09012. http://dx.doi.org/10.1051/e3sconf/202020509012.
Texto completo da fonteChen, Wei Qiang, Majid Sedighi e Andrey P. Jivkov. "Thermo-osmosis in hydrophilic nanochannels: mechanism and size effect". Nanoscale 13, n.º 3 (2021): 1696–716. http://dx.doi.org/10.1039/d0nr06687g.
Texto completo da fonteCho, Yeonsu, e Hyo Kang. "Influence of the anionic structure and central atom of a cation on the properties of LCST-type draw solutes for forward osmosis". RSC Advances 12, n.º 45 (2022): 29405–13. http://dx.doi.org/10.1039/d2ra05131a.
Texto completo da fonteProesmans, Karel, e Daan Frenkel. "Comparing theory and simulation for thermo-osmosis". Journal of Chemical Physics 151, n.º 12 (28 de setembro de 2019): 124109. http://dx.doi.org/10.1063/1.5123164.
Texto completo da fonteYang, Yang, Klaus Guerlebeck e Tom Schanz. "Thermo-Osmosis Effect in Saturated Porous Medium". Transport in Porous Media 104, n.º 2 (21 de maio de 2014): 253–71. http://dx.doi.org/10.1007/s11242-014-0332-5.
Texto completo da fonteSavić-Šević, Svetlana, Dejan Pantelić, Branka Murić, Dušan Grujić, Darko Vasiljević, Branko Kolaric e Branislav Jelenković. "Thermo-osmotic metamaterials with large negative thermal expansion". Journal of Materials Chemistry C 9, n.º 26 (2021): 8163–68. http://dx.doi.org/10.1039/d1tc01028j.
Texto completo da fonteFernández-Pineda, Cristóbal, e M. Isabel Vázquez-González. "Temperature dependence of thermo-osmosis. A solution model". Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 85, n.º 5 (1989): 1019. http://dx.doi.org/10.1039/f19898501019.
Texto completo da fonteAsh, Richard, Richard M. Barrer, A. Vernon Edge, Terence Foley e Christopher L. Murray. "Thermo-osmosis of sorbable gases in porous media." Journal of Membrane Science 76, n.º 1 (janeiro de 1993): 1–26. http://dx.doi.org/10.1016/0376-7388(93)87001-r.
Texto completo da fonteKamio, Eiji, Hiroki Kurisu, Tomoki Takahashi, Atsushi Matsuoka, Tomohisa Yoshioka, Keizo Nakagawa e Hideto Matsuyama. "Using Reverse Osmosis Membrane at High Temperature for Water Recovery and Regeneration from Thermo-Responsive Ionic Liquid-Based Draw Solution for Efficient Forward Osmosis". Membranes 11, n.º 8 (31 de julho de 2021): 588. http://dx.doi.org/10.3390/membranes11080588.
Texto completo da fonteLi, Ji, Rui Long, Bo Zhang, Ronggui Yang, Wei Liu e Zhichun Liu. "Nano Heat Pump Based on Reverse Thermo-osmosis Effect". Journal of Physical Chemistry Letters 11, n.º 22 (29 de setembro de 2020): 9856–61. http://dx.doi.org/10.1021/acs.jpclett.0c02475.
Texto completo da fonteZagorščak, Renato, Majid Sedighi e Hywel R. Thomas. "Effects of Thermo-Osmosis on Hydraulic Behavior of Saturated Clays". International Journal of Geomechanics 17, n.º 3 (março de 2017): 04016068. http://dx.doi.org/10.1061/(asce)gm.1943-5622.0000742.
Texto completo da fonteHartanto, Yusak, Seonho Yun, Bo Jin e Sheng Dai. "Functionalized thermo-responsive microgels for high performance forward osmosis desalination". Water Research 70 (março de 2015): 385–93. http://dx.doi.org/10.1016/j.watres.2014.12.023.
Texto completo da fonteZhou, Y., R. K. N. D. Rajapakse e J. Graham. "A coupled thermoporoelastic model with thermo-osmosis and thermal-filtration". International Journal of Solids and Structures 35, n.º 34-35 (dezembro de 1998): 4659–83. http://dx.doi.org/10.1016/s0020-7683(98)00089-4.
Texto completo da fonteOu, Ranwen, Yaqin Wang, Huanting Wang e Tongwen Xu. "Thermo-sensitive polyelectrolytes as draw solutions in forward osmosis process". Desalination 318 (junho de 2013): 48–55. http://dx.doi.org/10.1016/j.desal.2013.03.022.
Texto completo da fonteAl-Alawy, Ahmed Faiq, e Ramy Mohamed Al – Alawy. "Thermal Osmosis of Mixtures of Water and Organic Compounds through Different Membranes". Iraqi Journal of Chemical and Petroleum Engineering 17, n.º 2 (30 de junho de 2016): 53–68. http://dx.doi.org/10.31699/ijcpe.2016.2.7.
Texto completo da fonteRathna, Ravichandran, e Ekambaram Nakkeeran. "Performance of High Molecular Weight Osmotic Solution for Opuntia Betacyanin Concentration by Forward Osmosis". Current Biotechnology 8, n.º 2 (20 de janeiro de 2020): 116–26. http://dx.doi.org/10.2174/2211550108666191025112221.
Texto completo da fonteYuan, Ziwen, Yanxi Yu, Li Wei, Cheng Wang, Xia Zhong, Xiao Sui, Zixun Yu, Dong Suk Han, Hokyong Shon e Yuan Chen. "Thermo-osmosis-Coupled Thermally Regenerative Electrochemical Cycle for Efficient Lithium Extraction". ACS Applied Materials & Interfaces 13, n.º 5 (26 de janeiro de 2021): 6276–85. http://dx.doi.org/10.1021/acsami.0c20464.
Texto completo da fonteImai, Yusuke. "Network Representation of Power Coupling Complex Phenomena: Thermoelectricity and Thermo-osmosis." membrane 21, n.º 4 (1996): 254–63. http://dx.doi.org/10.5360/membrane.21.254.
Texto completo da fonteWang, Xin, Maochang Liu, Dengwei Jing, Abdulmajeed Mohamad e Oleg Prezhdo. "Net Unidirectional Fluid Transport in Locally Heated Nanochannel by Thermo-osmosis". Nano Letters 20, n.º 12 (24 de novembro de 2020): 8965–71. http://dx.doi.org/10.1021/acs.nanolett.0c04331.
Texto completo da fonteLin, Hai, Jingen Deng, Xiaocheng Zhang e Jiajia Gao. "Porothermoelastic Response of a Borehole in Fluid-Saturated Medium Subjected to Thermal Osmosis Effect". Geofluids 2023 (22 de maio de 2023): 1–13. http://dx.doi.org/10.1155/2023/4030804.
Texto completo da fonteWang, Xin, Maochang Liu, Dengwei Jing e Oleg Prezhdo. "Generating Shear Flows without Moving Parts by Thermo-osmosis in Heterogeneous Nanochannels". Journal of Physical Chemistry Letters 12, n.º 41 (11 de outubro de 2021): 10099–105. http://dx.doi.org/10.1021/acs.jpclett.1c02795.
Texto completo da fonteVillaluenga, J. P. G., B. Seoane, V. M. Barragán e C. Ruiz-Bauzá. "Thermo-osmosis of mixtures of water and methanol through a Nafion membrane". Journal of Membrane Science 274, n.º 1-2 (abril de 2006): 116–22. http://dx.doi.org/10.1016/j.memsci.2005.08.010.
Texto completo da fonteDedes, D., e D. Woermann. "Convective gas flow in plant aeration and thermo-osmosis: a model experiment". Aquatic Botany 54, n.º 2-3 (julho de 1996): 111–20. http://dx.doi.org/10.1016/0304-3770(96)01039-x.
Texto completo da fonteLiu, Jinjin, Chuanqin Yao, Wenbo Su e Yizhe Zhao. "Research Progress on the Influence of Thermo-Chemical Effects on the Swelling Pressure of Bentonite". Applied Sciences 13, n.º 9 (30 de abril de 2023): 5580. http://dx.doi.org/10.3390/app13095580.
Texto completo da fonteMai, Van-Phung, Wei-Hao Huang e Ruey-Jen Yang. "Charge Regulation and pH Effects on Thermo-Osmotic Conversion". Nanomaterials 12, n.º 16 (13 de agosto de 2022): 2774. http://dx.doi.org/10.3390/nano12162774.
Texto completo da fonteYu, Sanchuan, Zhihai Chen, Jingqun Liu, Guohua Yao, Meihong Liu e Congjie Gao. "Intensified cleaning of organic-fouled reverse osmosis membranes by thermo-responsive polymer (TRP)". Journal of Membrane Science 392-393 (março de 2012): 181–91. http://dx.doi.org/10.1016/j.memsci.2011.12.025.
Texto completo da fonteWang, Yanni, Hairong Yu, Rui Xie, Kuangmin Zhao, Xiaojie Ju, Wei Wang, Zhuang Liu e Liangyin Chu. "An easily recoverable thermo-sensitive polyelectrolyte as draw agent for forward osmosis process". Chinese Journal of Chemical Engineering 24, n.º 1 (janeiro de 2016): 86–93. http://dx.doi.org/10.1016/j.cjche.2015.11.015.
Texto completo da fonteZeitoun, Obida, Jamel Orfi, Salah Ud-Din Khan e Hany AlAnsary. "Desalinated Water Costs from Steam, Combined, and Nuclear Cogeneration Plants Using Power and Heat Allocation Methods". Energies 16, n.º 6 (15 de março de 2023): 2752. http://dx.doi.org/10.3390/en16062752.
Texto completo da fonteZin, Moh Moh, Areej Alsobh, Arijit Nath, Attila Csighy e Szilvia Bánvölgyi. "Concentrations of Beetroot (Beta vulgaris L.) Peel and Flesh Extracts by Reverse Osmosis Membrane". Applied Sciences 12, n.º 13 (22 de junho de 2022): 6360. http://dx.doi.org/10.3390/app12136360.
Texto completo da fonteZhu, Bin, Zhigang Ye, Lujun Wang, Wenjie Xu, Deqiong Kong, Thomas Nagel, Olaf Kolditz e Yunmin Chen. "Theoretical Investigation into Thermo-Osmosis and Thermofiltration Effects on Hydromechanical Behavior of Saturated Soils". Journal of Engineering Mechanics 147, n.º 4 (abril de 2021): 04021005. http://dx.doi.org/10.1061/(asce)em.1943-7889.0001905.
Texto completo da fonteAbdullah, Mohd Amirul Mukmin, Muhammad Suhaimi Man, Syamsul B. Abdullah e Syed Mohd Saufi. "A glance on thermo-responsive ionic liquids as draw solution in forward osmosis system". DESALINATION AND WATER TREATMENT 206 (2020): 165–76. http://dx.doi.org/10.5004/dwt.2020.26317.
Texto completo da fonteHajabdollahi, Zahra, e Kyung Chun Kim. "Thermo-economic assessment of reverse osmosis desalination system driven by the organic Rankine cycle". DESALINATION AND WATER TREATMENT 238 (2021): 1–14. http://dx.doi.org/10.5004/dwt.2021.27777.
Texto completo da fonteKim, Jin-joo, Jae-Seung Chung, Hyo Kang, Yun Ah Yu, Won Jae Choi, Hee Joong Kim e Jong-Chan Lee. "Thermo-responsive copolymers with ionic group as novel draw solutes for forward osmosis processes". Macromolecular Research 22, n.º 9 (setembro de 2014): 963–70. http://dx.doi.org/10.1007/s13233-014-2142-6.
Texto completo da fonteAbdullah, Mohd Amirul Mukmin, Nur Aisyah Shafie, Mazrul Nizam Abu Seman e Syamsul B. Abdullah. "Performance Evaluation of Forward Osmosis Membranes for Desalination Applications". Chiang Mai Journal of Science 51, n.º 2 (29 de março de 2024): 1–14. http://dx.doi.org/10.12982/cmjs.2024.026.
Texto completo da fonteJu, Changha, Chanhyuk Park, Taehyung Kim, Shinwoo Kang e Hyo Kang. "Thermo-responsive draw solute for forward osmosis process; poly(ionic liquid) having lower critical solution temperature characteristics". RSC Advances 9, n.º 51 (2019): 29493–501. http://dx.doi.org/10.1039/c9ra04020j.
Texto completo da fonteAli, Saqib, Sami Ullah, Muhammad Nauman Khan, Wisal Muhammad Khan, Sarah Abdul Razak, Sana Wahab, Aqsa Hafeez, Sajid Ali Khan Bangash e Peter Poczai. "The Effects of Osmosis and Thermo-Priming on Salinity Stress Tolerance in Vigna radiata L." Sustainability 14, n.º 19 (10 de outubro de 2022): 12924. http://dx.doi.org/10.3390/su141912924.
Texto completo da fonteBendoy, Anelyn P., Hana G. Zeweldi, Myoung Jun Park, Ho Kyong Shon, Hern Kim, Wook-Jin Chung e Grace M. Nisola. "Thermo-responsive hydrogel with deep eutectic mixture co-monomer as drawing agent for forward osmosis". Desalination 542 (novembro de 2022): 116067. http://dx.doi.org/10.1016/j.desal.2022.116067.
Texto completo da fonteWang, Gang, Yiwei Ma e Wei Chen. "Molecular level study of carbon isotope fractionation in Knudsen number flows induced by thermo-osmosis". International Journal of Thermal Sciences 174 (abril de 2022): 107441. http://dx.doi.org/10.1016/j.ijthermalsci.2021.107441.
Texto completo da fonteKim, Soowhan, e M. M. Mench. "Investigation of temperature-driven water transport in polymer electrolyte fuel cell: Thermo-osmosis in membranes". Journal of Membrane Science 328, n.º 1-2 (fevereiro de 2009): 113–20. http://dx.doi.org/10.1016/j.memsci.2008.11.043.
Texto completo da fonteAsh, Richard, Richard M. Barrer, A. Vernon, J. Edge e Terence Foley. "Thermo-osmosis of sorbable gases in porous media. Part IV. Mixture separation by two procedures1". Journal of Membrane Science 125, n.º 1 (5 de março de 1997): 41–59. http://dx.doi.org/10.1016/s0376-7388(96)00109-3.
Texto completo da fonteChen, XiaoHui, William Pao e Xikui Li. "Coupled thermo-hydro-mechanical model with consideration of thermal-osmosis based on modified mixture theory". International Journal of Engineering Science 64 (março de 2013): 1–13. http://dx.doi.org/10.1016/j.ijengsci.2012.12.005.
Texto completo da fonteKim, Jin-joo, Hyo Kang, Yong-Seok Choi, Yun Ah Yu e Jong-Chan Lee. "Thermo-responsive oligomeric poly(tetrabutylphosphonium styrenesulfonate)s as draw solutes for forward osmosis (FO) applications". Desalination 381 (março de 2016): 84–94. http://dx.doi.org/10.1016/j.desal.2015.11.013.
Texto completo da fonteSong, Zhu, Fayun Liang e Shengli Chen. "Thermo-osmosis and mechano-caloric couplings on THM responses of porous medium under point heat source". Computers and Geotechnics 112 (agosto de 2019): 93–103. http://dx.doi.org/10.1016/j.compgeo.2019.04.011.
Texto completo da fonteLuo, Qizhao, Junxian Pei, Panfeng Yun, Xuejiao Hu, Bin Cao, Kunpeng Shan, Bin Tang et al. "Simultaneous water production and electricity generation driven by synergistic temperature-salinity gradient in thermo-osmosis process". Applied Energy 351 (dezembro de 2023): 121810. http://dx.doi.org/10.1016/j.apenergy.2023.121810.
Texto completo da fonteZhou, Jianxing, Xiaoqi Dai, Boliang Jia, Junle Qu, Ho-Pui Ho, Bruce Zhi Gao, Yonghong Shao e Jiajie Chen. "Nanorefrigerative tweezers for optofluidic manipulation". Applied Physics Letters 120, n.º 16 (18 de abril de 2022): 163701. http://dx.doi.org/10.1063/5.0086855.
Texto completo da fonteGonçalvès, Julio, Ghislain de Marsily e Joachim Tremosa. "Importance of thermo-osmosis for fluid flow and transport in clay formations hosting a nuclear waste repository". Earth and Planetary Science Letters 339-340 (julho de 2012): 1–10. http://dx.doi.org/10.1016/j.epsl.2012.03.032.
Texto completo da fonteLiu, Jian, e Wei Cao. "Driving Water through Sub-2-Nanometer Carbon Nanotubes". Lubricants 12, n.º 6 (16 de junho de 2024): 220. http://dx.doi.org/10.3390/lubricants12060220.
Texto completo da fonteBacha, Habib Ben, Abdelkader Saad Abdullah, Mutabe Aljaghtham, Reda S. Salama, Mohamed Abdelgaied e Abd Elnaby Kabeel. "Thermo-Economic Assessment of Photovoltaic/Thermal Pan-Els-Powered Reverse Osmosis Desalination Unit Combined with Preheating Using Geothermal Energy". Energies 16, n.º 8 (12 de abril de 2023): 3408. http://dx.doi.org/10.3390/en16083408.
Texto completo da fonteZhang, Zhihong, Shakil A. Masum, Gailei Tian e Hywel R. Thomas. "Modelling non-isothermal volume change and solute transport behaviours of a semi-permeable clay soil under the combined influence of mechanical loading, chemical-osmosis, and thermo-osmosis". Engineering Geology 293 (novembro de 2021): 106271. http://dx.doi.org/10.1016/j.enggeo.2021.106271.
Texto completo da fonte