Artigos de revistas sobre o tema "Thermal shock behavior"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Thermal shock behavior".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Purushothama, K., e Dr Shivarudraiah. "Thermal shock and wear behavior of zirconate thermal barrier coatings". World Journal of Engineering 11, n.º 6 (1 de dezembro de 2014): 521–28. http://dx.doi.org/10.1260/1708-5284.11.6.521.
Texto completo da fonteZhang, Hui, Yan Ruo Hong, Hong Xia Li e Yang Bin. "Thermal Fatigue Behavior of Ladle Purging Plug". Advanced Materials Research 105-106 (abril de 2010): 158–61. http://dx.doi.org/10.4028/www.scientific.net/amr.105-106.158.
Texto completo da fonteLutz, Ekkehard H., Michael V. Swain e Nils Claussen. "Thermal Shock Behavior of Duplex Ceramics". Journal of the American Ceramic Society 74, n.º 1 (janeiro de 1991): 19–24. http://dx.doi.org/10.1111/j.1151-2916.1991.tb07290.x.
Texto completo da fonteChen, Qingqing, Yuan Zhang, Yu Zhou, Daxin Li e Guobing Ying. "Thermal Shock Behavior of Si3N4/BN Fibrous Monolithic Ceramics". Materials 16, n.º 19 (24 de setembro de 2023): 6377. http://dx.doi.org/10.3390/ma16196377.
Texto completo da fonteLi, Zhong Qiu, Li Jie Ci, Tie Cheng Feng e Shao Yan Zhang. "The Thermal Shock Resistance of Mg-PSZ/LaPO4 Ceramics". Advanced Materials Research 785-786 (setembro de 2013): 187–90. http://dx.doi.org/10.4028/www.scientific.net/amr.785-786.187.
Texto completo da fonteLi, Meiheng, Xiaofeng Sun, Wangyu Hu e Hengrong Guan. "Thermal shock behavior of EB-PVD thermal barrier coatings". Surface and Coatings Technology 201, n.º 16-17 (maio de 2007): 7387–91. http://dx.doi.org/10.1016/j.surfcoat.2007.02.003.
Texto completo da fonteSeo, Hyoung-IL, Daejong Kim e Kee Sung Lee. "Crack Healing in Mullite-Based EBC during Thermal Shock Cycle". Coatings 9, n.º 9 (17 de setembro de 2019): 585. http://dx.doi.org/10.3390/coatings9090585.
Texto completo da fonteKoo, Song Heo, e Young Shin Lee. "The Study of Optimum Shape to Evaluation for Thermal Shock Behavior of Graphite". Key Engineering Materials 326-328 (dezembro de 2006): 915–18. http://dx.doi.org/10.4028/www.scientific.net/kem.326-328.915.
Texto completo da fonteRendtorff, Nicolás, Gustavo Suárez, Yesica Bruni, Liliana Garrido e Esteban Fausto Aglietti. "Thermal Shock Behavior of Zircon Based Refractories". Advances in Science and Technology 70 (outubro de 2010): 59–64. http://dx.doi.org/10.4028/www.scientific.net/ast.70.59.
Texto completo da fonteYao, Sun Hui, Yan Liang Su, Hung Yu Shu, Chia I. Lee e Zong Ling You. "Comparative Study on Nano-Structural and Traditional Al2O3-13TiO2 Air Plasma Sprayed Coatings and their Thermal Shock Performance". Key Engineering Materials 739 (junho de 2017): 103–7. http://dx.doi.org/10.4028/www.scientific.net/kem.739.103.
Texto completo da fonteLuțcanu, Marian, Ramona Cimpoeșu, Mărioara Abrudeanu, Corneliu Munteanu, Sorin Georgian Moga, Margareta Coteata, Georgeta Zegan, Marcelin Benchea, Nicanor Cimpoeșu e Alice Mirela Murariu. "Mechanical Properties and Thermal Shock Behavior of Al2O3-YSZ Ceramic Layers Obtained by Atmospheric Plasma Spraying". Crystals 13, n.º 4 (3 de abril de 2023): 614. http://dx.doi.org/10.3390/cryst13040614.
Texto completo da fonteSahlaoui, Habib, Kamel Makhlouf e Habib Sidhom. "Comparative Study of the Thermal Shock Resistance of an Industrial Tableware Porcelain". Journal of Engineering 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/972019.
Texto completo da fonteLiu, Chun Feng, Feng Ye, Yu Zhou, Yu Dong Huang e Jian Min Zhou. "Thermal Shock Behavior of Nd-Doped α-Sialon Ceramics". Key Engineering Materials 434-435 (março de 2010): 130–33. http://dx.doi.org/10.4028/www.scientific.net/kem.434-435.130.
Texto completo da fonteColombo, Paolo, John R. Hellmann e David L. Shelleman. "Thermal Shock Behavior of Silicon Oxycarbide Foams". Journal of the American Ceramic Society 85, n.º 9 (setembro de 2002): 2306–12. http://dx.doi.org/10.1111/j.1151-2916.2002.tb00452.x.
Texto completo da fonteMusic, Denis, e Bastian Stelzer. "Intrinsic Thermal Shock Behavior of Common Rutile Oxides". Physics 1, n.º 2 (28 de agosto de 2019): 290–300. http://dx.doi.org/10.3390/physics1020022.
Texto completo da fonteLIU, ZI WEI, WEI WU, JIA JIE HUA, CHU CHENG LIN, XUE BIN ZHENG e YI ZENG. "THERMAL SHOCK BEHAVIOR OF AIR PLASMA SPRAYED CoNiCrAlY/YSZ THERMAL BARRIER COATINGS". Surface Review and Letters 21, n.º 05 (29 de setembro de 2014): 1450069. http://dx.doi.org/10.1142/s0218625x14500693.
Texto completo da fonteKirchhoff, G., M. Holzherr, U. Bast e U. Rettig. "Thermal Shock and Thermal Cycling Behavior of Silicon Nitride Ceramics". Key Engineering Materials 89-91 (agosto de 1993): 605–10. http://dx.doi.org/10.4028/www.scientific.net/kem.89-91.605.
Texto completo da fonteHuang, Jibo, Wen Sun, Renzhong Huang e Wenhua Ma. "Cracking Behavior of Atmospheric Plasma-Sprayed 8YSZ Thermal Barrier Coatings during Thermal Shock Test". Coatings 13, n.º 2 (20 de janeiro de 2023): 243. http://dx.doi.org/10.3390/coatings13020243.
Texto completo da fonteSun, Tian Tian, Yan Xia Wang, Hai Yun, Dong Huan Zhang e Qing Hui Shang. "Determining the Thermal Shock Elastic Behavior of Mullite Ceramic Regenerator Material by Ultrasonic Testing". Key Engineering Materials 633 (novembro de 2014): 472–75. http://dx.doi.org/10.4028/www.scientific.net/kem.633.472.
Texto completo da fontePosarac, Milica, A. Devecerski, T. Volkov-Husovic, B. Matovic e D. M. Minic. "The effect of Y2O3 addition on thermal shock behavior of magnesium aluminate spinel". Science of Sintering 41, n.º 1 (2009): 75–81. http://dx.doi.org/10.2298/sos0901075p.
Texto completo da fonteDusza, Ján. "High Temperature Behavior of Coatings and Layered Ceramics". Key Engineering Materials 333 (março de 2007): 167–76. http://dx.doi.org/10.4028/www.scientific.net/kem.333.167.
Texto completo da fonteJournal, Baghdad Science. "Titania Effect on Sintering behavior of Alumina". Baghdad Science Journal 6, n.º 4 (6 de dezembro de 2009): 770–74. http://dx.doi.org/10.21123/bsj.6.4.770-774.
Texto completo da fonteSaleh, Qasid Abdul Sattar. "Titania Effect on Sintering behavior of Alumina". Baghdad Science Journal 6, n.º 4 (6 de dezembro de 2009): 770–74. http://dx.doi.org/10.21123/bsj.2009.6.4.770-774.
Texto completo da fonteLI, WEIGUO, e DAINING FANG. "EFFECTS OF THERMAL ENVIRONMENTS ON THE THERMAL SHOCK RESISTANCE OF ULTRA-HIGH TEMPERATURE CERAMICS". Modern Physics Letters B 22, n.º 14 (10 de junho de 2008): 1375–80. http://dx.doi.org/10.1142/s021798490801608x.
Texto completo da fonteYagawa, G., Y. Ando, K. Ishihara, T. Iwadate e Y. Tanaka. "Stable and Unstable Crack Growth of A508 Class 3 Plates Subjected to Combined Force of Thermal Shock and Tension". Journal of Pressure Vessel Technology 111, n.º 3 (1 de agosto de 1989): 234–40. http://dx.doi.org/10.1115/1.3265669.
Texto completo da fonteShe, Jihong, Tatsuki Ohji e Zhen-Yan Deng. "Thermal Shock Behavior of Porous Silicon Carbide Ceramics". Journal of the American Ceramic Society 85, n.º 8 (agosto de 2002): 2125–27. http://dx.doi.org/10.1111/j.1151-2916.2002.tb00418.x.
Texto completo da fonteJin, Xinxin, Xinghong Zhang, Jiecai Han, Ping Hu e Rujie He. "Thermal shock behavior of porous ZrB2–SiC ceramics". Materials Science and Engineering: A 588 (dezembro de 2013): 175–80. http://dx.doi.org/10.1016/j.msea.2013.09.046.
Texto completo da fonteWang, Lin, Jian-Lin Shi, Ming-Tong Lin, Hang-Rong Chen e Dong-Sheng Yan. "The thermal shock behavior of alumina-copper composite". Materials Research Bulletin 36, n.º 5-6 (março de 2001): 925–32. http://dx.doi.org/10.1016/s0025-5408(01)00549-9.
Texto completo da fonteAldridge, Matthew, e Julie A. Yeomans. "Thermal Shock Behavior of Iron-Particle-Toughened Alumina". Journal of the American Ceramic Society 84, n.º 3 (março de 2001): 603–7. http://dx.doi.org/10.1111/j.1151-2916.2001.tb00706.x.
Texto completo da fonteLi, Shibo, Haolin Li, Yang Zhou e Hongxiang Zhai. "Mechanism for abnormal thermal shock behavior of Cr2AlC". Journal of the European Ceramic Society 34, n.º 5 (maio de 2014): 1083–88. http://dx.doi.org/10.1016/j.jeurceramsoc.2013.12.003.
Texto completo da fonteTian, Chunyan, Hai Jiang e Ning Liu. "Thermal shock behavior of Si3N4–TiN nano-composites". International Journal of Refractory Metals and Hard Materials 29, n.º 1 (janeiro de 2011): 14–20. http://dx.doi.org/10.1016/j.ijrmhm.2010.06.006.
Texto completo da fonteMuccillo, R., E. N. S. Muccillo e N. H. Saito. "Thermal shock behavior of ZrO2:MgO solid electrolytes". Materials Letters 34, n.º 3-6 (março de 1998): 128–32. http://dx.doi.org/10.1016/s0167-577x(97)00152-3.
Texto completo da fonteZhang, H. B., Y. C. Zhou, Y. W. Bao e M. S. Li. "Abnormal thermal shock behavior of Ti3SiC2 and Ti3AlC2". Journal of Materials Research 21, n.º 09 (setembro de 2006): 2401–7. http://dx.doi.org/10.1557/jmr.2006.0289.
Texto completo da fonteASHIZUKA, Masahiro, Yasuyuki KIMURA, Hideki FUJII, Kouichi ABE e Yoshitaka KUBOTA. "Thermal Shock Behavior of Y2O3-Partially Stabilized Zirconia". Journal of the Ceramic Association, Japan 94, n.º 1090 (1986): 577–82. http://dx.doi.org/10.2109/jcersj1950.94.1090_577.
Texto completo da fonteKOGO, Yasuo, Kazutoshi NAKAZAKI, Takumi KATAGIRI e Hiroshi HATTA. "137 Thermal Shock Behavior of C/C Composite". Proceedings of the Materials and processing conference 2001.9 (2001): 291–92. http://dx.doi.org/10.1299/jsmemp.2001.9.291.
Texto completo da fonteWang, Bao-Lin, e Yiu-Wing Mai. "On Thermal Shock Behavior of Functionally Graded Materials". Journal of Thermal Stresses 30, n.º 6 (20 de abril de 2007): 523–58. http://dx.doi.org/10.1080/01495730701273981.
Texto completo da fonteOrenstein, Robert M., e David J. Green. "Thermal Shock Behavior of Open-Cell Ceramic Foams". Journal of the American Ceramic Society 75, n.º 7 (julho de 1992): 1899–905. http://dx.doi.org/10.1111/j.1151-2916.1992.tb07214.x.
Texto completo da fonteAshizuka, Masahiro, Yasuyuki Kimura, Hideki Fujii, Kouichi Abe e Yoshitaka Kubota. "Thermal shock behavior of Y2O3-partially stabilized zirconia". International Journal of High Technology Ceramics 3, n.º 1 (janeiro de 1987): 86–87. http://dx.doi.org/10.1016/0267-3762(87)90076-2.
Texto completo da fonteTian, Chunyan, Ning Liu e Maohu Lu. "Thermal shock and thermal fatigue behavior of Si3N4–TiC nano-composites". International Journal of Refractory Metals and Hard Materials 26, n.º 5 (setembro de 2008): 478–84. http://dx.doi.org/10.1016/j.ijrmhm.2007.11.004.
Texto completo da fonteZhang, Hongye, Zhanwei Liu, Xiaobo Yang e Huimin Xie. "Interface failure behavior of YSZ thermal barrier coatings during thermal shock". Journal of Alloys and Compounds 779 (março de 2019): 686–97. http://dx.doi.org/10.1016/j.jallcom.2018.11.311.
Texto completo da fonteZhong, Xin, Ya Ran Niu, Tao Zhu, Hong Li, Xue Bin Zheng e Jin Liang Sun. "Thermal Shock Resistance of Yb2SiO5/Si and Yb2Si2O7/Si Coatings Deposited on C/SiC Composites". Solid State Phenomena 281 (agosto de 2018): 472–77. http://dx.doi.org/10.4028/www.scientific.net/ssp.281.472.
Texto completo da fonteLu, Guan Xiong, Li Jun Hao e Fu Xing Ye. "Thermal Analysis and Failure Behavior of 8YSZ Thermal Barrier Coatings under Thermal Cycling Tests". Applied Mechanics and Materials 441 (dezembro de 2013): 91–95. http://dx.doi.org/10.4028/www.scientific.net/amm.441.91.
Texto completo da fonteSong, Dowon, Taeseup Song, Ungyu Paik, Guanlin Lyu, Yeon-Gil Jung, Baig-Gyu Choi, In-Soo Kim e Jing Zhang. "Crack-Resistance Behavior of an Encapsulated, Healing Agent Embedded Buffer Layer on Self-Healing Thermal Barrier Coatings". Coatings 9, n.º 6 (31 de maio de 2019): 358. http://dx.doi.org/10.3390/coatings9060358.
Texto completo da fonteJamali, Hossein, Reza Mozafarinia, Reza Shoja Razavi e Raheleh Ahmadi Pidani. "Investigation of Thermal Shock Behavior of Plasma-Sprayed NiCoCrAlY/YSZ Thermal Barrier Coatings". Advanced Materials Research 472-475 (fevereiro de 2012): 246–50. http://dx.doi.org/10.4028/www.scientific.net/amr.472-475.246.
Texto completo da fonteLiu, Xiaochong, Xiaojun Guo, Youliang Xu, Longbiao Li, Wang Zhu, Yuqi Zeng, Jian Li, Xiao Luo e Xiaoan Hu. "Cyclic Thermal Shock Damage Behavior in CVI SiC/SiC High-Pressure Turbine Twin Guide Vanes". Materials 14, n.º 20 (15 de outubro de 2021): 6104. http://dx.doi.org/10.3390/ma14206104.
Texto completo da fonteMardoukhi, Ahmad, Timo Saksala, Mikko Hokka e Veli-Tapani Kuokkala. "A numerical and experimental study on the tensile behavior of plasma shocked granite under dynamic loading". Rakenteiden Mekaniikka 50, n.º 2 (5 de agosto de 2017): 41–62. http://dx.doi.org/10.23998/rm.65301.
Texto completo da fonteZHANG, XINGHONG, ZHI WANG, XIN SUN, WENBO HAN e CHANGQING HONG. "THERMAL SHOCK BEHAVIOR OF ZrB2-20vol.%SiC-15vol.% GRAPHITE FLAKE BY HOT PRESSING". International Journal of Modern Physics B 23, n.º 06n07 (20 de março de 2009): 1160–65. http://dx.doi.org/10.1142/s0217979209060622.
Texto completo da fonteShen, Qiang, Chang Lian Chen, Fei Chen, Qi Wen Liu e Lian Meng Zhang. "Thermal Shock Behavior of Calcia Stabilized Zirconia Ceramics with Porosity Gradient Structure". Materials Science Forum 631-632 (outubro de 2009): 435–40. http://dx.doi.org/10.4028/www.scientific.net/msf.631-632.435.
Texto completo da fonteLiu, Gu, Liu Ying Wang, Wei Wang e Yong Fa Wu. "Microstructure and Properties of Thermal Sprayed ZrO2-NiCr Coatings". Materials Science Forum 809-810 (dezembro de 2014): 546–49. http://dx.doi.org/10.4028/www.scientific.net/msf.809-810.546.
Texto completo da fonteGuo, Xingye, Zhe Lu, Yeon-Gil Jung, Li Li, James Knapp e Jing Zhang. "Thermal Properties, Thermal Shock, and Thermal Cycling Behavior of Lanthanum Zirconate-Based Thermal Barrier Coatings". Metallurgical and Materials Transactions E 3, n.º 2 (29 de março de 2016): 64–70. http://dx.doi.org/10.1007/s40553-016-0070-4.
Texto completo da fonte