Artigos de revistas sobre o tema "Thermal and thermomechanical simulation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Thermal and thermomechanical simulation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Svotina, Victoria V., Andrey I. Mogulkin e Alexandra Y. Kupreeva. "Ion Source—Thermal and Thermomechanical Simulation". Aerospace 8, n.º 7 (14 de julho de 2021): 189. http://dx.doi.org/10.3390/aerospace8070189.
Texto completo da fonteZHANG, JINAO, JEREMY HILLS, YONGMIN ZHONG, BIJAN SHIRINZADEH, JULIAN SMITH e CHENGFAN GU. "TEMPERATURE-DEPENDENT THERMOMECHANICAL MODELING OF SOFT TISSUE DEFORMATION". Journal of Mechanics in Medicine and Biology 18, n.º 08 (dezembro de 2018): 1840021. http://dx.doi.org/10.1142/s0219519418400213.
Texto completo da fonteHrevtsev, O., N. Selivanova, P. Popovych, L. Poberezhny, V. Sakhno, O. Shevchuk, L. Poberezhna, I. Murovanyi, A. Hrytsanchuk e O. Romanyshyn. "Simulation of thermomechanical processes in disc brakes of wheeled vehicles". Journal of Achievements in Materials and Manufacturing Engineering 1, n.º 104 (1 de janeiro de 2021): 11–20. http://dx.doi.org/10.5604/01.3001.0014.8482.
Texto completo da fonteYamashita, Hiroki, Rohit Arora, Hiroyuki Kanazawa e Hiroyuki Sugiyama. "Reduced-order thermomechanical modeling of multibody systems using floating frame of reference formulation". Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 233, n.º 3 (15 de novembro de 2018): 617–30. http://dx.doi.org/10.1177/1464419318810886.
Texto completo da fonteGlaspell, Aspen, Jose Angel Diosdado De la Pena, Saroj Dahal, Sandesh Neupane, Jae Joong Ryu e Kyosung Choo. "Heat Transfer and Structural Characteristics of Dissimilar Joints Joining Ti-64 and NiTi via Laser Welding". Energies 15, n.º 19 (22 de setembro de 2022): 6949. http://dx.doi.org/10.3390/en15196949.
Texto completo da fonteBecker, Eric, Laurent Langlois, Véronique Favier e Régis Bigot. "Thermomechanical Modelling and Simulation of C38 Thixoextrusion Steel". Solid State Phenomena 217-218 (setembro de 2014): 130–37. http://dx.doi.org/10.4028/www.scientific.net/ssp.217-218.130.
Texto completo da fonteBehseresht, Saeed, e Young Ho Park. "Additive Manufacturing of Composite Polymers: Thermomechanical FEA and Experimental Study". Materials 17, n.º 8 (20 de abril de 2024): 1912. http://dx.doi.org/10.3390/ma17081912.
Texto completo da fonteLeppänen, Anton, Asko Kumpula, Joona Vaara, Massimo Cattarinussi, Juho Könnö e Tero Frondelius. "Thermomechanical Fatigue Analysis of Cylinder Head". Rakenteiden Mekaniikka 50, n.º 3 (21 de agosto de 2017): 182–85. http://dx.doi.org/10.23998/rm.64743.
Texto completo da fonteWang, Xiu Juan, Xiu Ting Zheng, Wei Zheng e Si Zhu Wu. "Molecular Simulation of Polycarbonate and Thermomechanical Analysis". Applied Mechanics and Materials 556-562 (maio de 2014): 441–44. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.441.
Texto completo da fonteAlekseev, M. V., N. G. Sudobin, A. A. Kuleshov e E. B. Savenkov. "Mathematical Simulation of Thermomechanics in an Impermeable Porous Medium". Herald of the Bauman Moscow State Technical University. Series Natural Sciences, n.º 4 (91) (agosto de 2020): 4–23. http://dx.doi.org/10.18698/1812-3368-2020-4-4-23.
Texto completo da fonteIslam, M. D., e Ger Kelly. "Thermal stress and thermomechanical simulation of embedded electronic packaging". International Journal of Nanomanufacturing 1, n.º 4 (2007): 516. http://dx.doi.org/10.1504/ijnm.2007.014571.
Texto completo da fonteMani, Hossein, Aboozar Taherizadeh, Behzad Sadeghian, Behzad Sadeghi e Pasquale Cavaliere. "Thermal–Mechanical and Microstructural Simulation of Rotary Friction Welding Processes by Using Finite Element Method". Materials 17, n.º 4 (8 de fevereiro de 2024): 815. http://dx.doi.org/10.3390/ma17040815.
Texto completo da fonteLitoš, P., M. Švantner e M. Honner. "Simulation of Strain Gauge Thermal Effects During Residual Stress Hole Drilling Measurements". Journal of Strain Analysis for Engineering Design 40, n.º 7 (1 de outubro de 2005): 611–19. http://dx.doi.org/10.1243/030932405x30812.
Texto completo da fonteWang, Youshan, Yintao Wei, Xijin Feng e Zhenhan Yao. "Finite Element Analysis of the Thermal Characteristics and Parametric Study of Steady Rolling Tires". Tire Science and Technology 40, n.º 3 (1 de outubro de 2012): 201–18. http://dx.doi.org/10.2346/tire.12.400304.
Texto completo da fonteDepradeux, L., e J. F. Jullien. "Experimental and numerical simulation of thermomechanical phenomena during a TIG welding process". Journal de Physique IV 120 (dezembro de 2004): 697–704. http://dx.doi.org/10.1051/jp4:2004120080.
Texto completo da fontePiekarska, W., M. Kubiak e Z. Saternus. "Numerical Simulation of Deformations in T-Joint Welded by the Laser Beam". Archives of Metallurgy and Materials 58, n.º 4 (1 de dezembro de 2013): 1391–96. http://dx.doi.org/10.2478/amm-2013-0181.
Texto completo da fonteTekriwal, P., e J. Mazumder. "Transient and Residual Thermal Strain-Stress Analysis of GMAW". Journal of Engineering Materials and Technology 113, n.º 3 (1 de julho de 1991): 336–43. http://dx.doi.org/10.1115/1.2903415.
Texto completo da fonteLurie, S. A., P. A. Belov e A. V. Volkov. "Variational formulation of thermomechanical problems". Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki 165, n.º 3 (12 de janeiro de 2024): 246–63. http://dx.doi.org/10.26907/2541-7746.2023.3.246-263.
Texto completo da fonteOsman, Ibrahim Sufian, e Nasir Ghazi Hariri. "Thermal Investigation and Optimized Design of a Novel Solar Self-Driven Thermomechanical Actuator". Sustainability 14, n.º 9 (23 de abril de 2022): 5078. http://dx.doi.org/10.3390/su14095078.
Texto completo da fonteSuyitno, Dmitry G. Eskin e Laurens Katgerman. "Thermal Contraction of AA5182 for Prediction of Ingot Distortions". Key Engineering Materials 306-308 (março de 2006): 977–82. http://dx.doi.org/10.4028/www.scientific.net/kem.306-308.977.
Texto completo da fonteDesrayaud, Christophe. "Simplified Simulation of the Friction Stir Welding Process. Influence of the Boundary Conditions Modelling". Materials Science Forum 706-709 (janeiro de 2012): 2943–49. http://dx.doi.org/10.4028/www.scientific.net/msf.706-709.2943.
Texto completo da fonteMa, Zhu, Changzheng Shi, Hegao Wu e Songzi Liu. "Structural Behavior of Massive Reinforced Concrete Structures Exposed to Thermomechanical Loads". Energies 15, n.º 7 (6 de abril de 2022): 2671. http://dx.doi.org/10.3390/en15072671.
Texto completo da fonteWang, Jun, Yingjie Xu, Weihong Zhang e Xuanchang Ren. "Thermomechanical Modeling of Amorphous Glassy Polymer Undergoing Large Viscoplastic Deformation: 3-Points Bending and Gas-Blow Forming". Polymers 11, n.º 4 (10 de abril de 2019): 654. http://dx.doi.org/10.3390/polym11040654.
Texto completo da fonteVemanaboina, Harinadh, Edison Gundabattini, Kaushik Kumar, Paolo Ferro e B. Sridhar Babu. "Thermal and Residual Stress Distributions in Inconel 625 Butt-Welded Plates: Simulation and Experimental Validation". Advances in Materials Science and Engineering 2021 (19 de outubro de 2021): 1–12. http://dx.doi.org/10.1155/2021/3948129.
Texto completo da fonteBoudjaza, Samia, Abdelmadjid Chehhat e Billel Rebai. "Time dependent thermal behavior of geothermal energy pile (GEP) for summer and winter periods using CFD analysis". STUDIES IN ENGINEERING AND EXACT SCIENCES 5, n.º 2 (29 de novembro de 2024): e11283. https://doi.org/10.54021/seesv5n2-591.
Texto completo da fonteRODOVALHO, F. S., e M. R. S. CORRÊA. "Thermal simulation of prisms with concrete blocks in a fire situation". Revista IBRACON de Estruturas e Materiais 12, n.º 3 (junho de 2019): 638–57. http://dx.doi.org/10.1590/s1983-41952019000300011.
Texto completo da fonteWang, Xiu Juan, Xiu Ting Zheng, Meng Song, Xiu Ying Zhao e Si Zhu Wu. "Thermomechanical Analysis of Poly (Bisphenol-A Carbonate) Performance and Molecular Simulation". Advanced Materials Research 781-784 (setembro de 2013): 576–79. http://dx.doi.org/10.4028/www.scientific.net/amr.781-784.576.
Texto completo da fonteAli, Mahmoud, Thomas Sayet, Alain Gasser e Eric Blond. "Transient Thermo-Mechanical Analysis of Steel Ladle Refractory Linings Using Mechanical Homogenization Approach". Ceramics 3, n.º 2 (2 de abril de 2020): 171–89. http://dx.doi.org/10.3390/ceramics3020016.
Texto completo da fonteKunda, Sudip, Noah J. Schmelzer, Akhilesh Pedgaonkar, Jack E. Rees, Samuel D. Dunham, Charles K. C. Lieou, Justin C. M. Langbaum e Curt A. Bronkhorst. "Study of the Thermomechanical Behavior of Single-Crystal and Polycrystal Copper". Metals 14, n.º 9 (22 de setembro de 2024): 1086. http://dx.doi.org/10.3390/met14091086.
Texto completo da fonteLi, Hui, Hanbo Zhang, Yixiong Zhang, Xiaoming Bai, Xuejiao Shao e Bingyang Wu. "Coupled Non-Ordinary State-Based Peridynamics Model for Ductile and Brittle Solids Subjected to Thermal Shocks". Applied Sciences 14, n.º 16 (7 de agosto de 2024): 6927. http://dx.doi.org/10.3390/app14166927.
Texto completo da fonteLi, Jianwei. "Thermomechanical constitutive equations for glass and numerical simulation on automobile glass forming technology". Glass Technology: European Journal of Glass Science and Technology Part A 63, n.º 4 (2022): 122–28. http://dx.doi.org/10.13036/17533546.63.4.006.
Texto completo da fonteKoeune, Roxane, e Jean Philippe Ponthot. "A Thermomechanical Model Dedicated to Thixoforming. Application to Semi-Solid Forming". Solid State Phenomena 192-193 (outubro de 2012): 269–75. http://dx.doi.org/10.4028/www.scientific.net/ssp.192-193.269.
Texto completo da fonteTamer, Ozan, Fabian Walter, Michael Sinapius e Markus Böl. "A Computational Geometric Parameter Optimization of the Thermomechanical Deicing Concept". Actuators 11, n.º 8 (5 de agosto de 2022): 223. http://dx.doi.org/10.3390/act11080223.
Texto completo da fonteOlshevskiy, Alexander, Alexey Olshevskiy, Oleg Berdnikov e Chang-Wan Kim. "Finite element analysis of railway disc brake considering structural, thermal, and wear phenomena". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 226, n.º 7 (15 de novembro de 2011): 1845–60. http://dx.doi.org/10.1177/0954406211428705.
Texto completo da fonteMarin-Montin, Jorge, Eduardo Roque, Yading Xu, Branko Šavija, Juan Carlos Serrano-Ruiz e Francisco Montero-Chacón. "Thermomechanical Performance Analysis of Novel Cement-Based Building Envelopes with Enhanced Passive Insulation Properties". Materials 15, n.º 14 (15 de julho de 2022): 4925. http://dx.doi.org/10.3390/ma15144925.
Texto completo da fonteKurcsics, Mark, Luzia Hahn e Peter Eberhard. "Transient Structural, Thermal and Optical Performance (STOP) Analysis with Accelerated Thermomechanical Computation". EPJ Web of Conferences 309 (2024): 03025. http://dx.doi.org/10.1051/epjconf/202430903025.
Texto completo da fonteVandevelde, Bart, Eric Beyne, Kouchi (G Q. ). Zhang, Jo Caers, Dirk Vandepitte e Martine Baelmans. "Parameterized Modeling of Thermomechanical Reliability for CSP Assemblies". Journal of Electronic Packaging 125, n.º 4 (1 de dezembro de 2003): 498–505. http://dx.doi.org/10.1115/1.1604150.
Texto completo da fonteNazaret, Fabien, Thierry Cutard e Olivier Barrau. "Sizing of Refractory Castable Gas-Burner Using Thermomechanical Simulations". Advances in Science and Technology 70 (outubro de 2010): 173–78. http://dx.doi.org/10.4028/www.scientific.net/ast.70.173.
Texto completo da fonteDarcourt, C., J. M. Roelandt, M. Rachik, D. Deloison e B. Journet. "Thermomechanical analysis applied to the laser beam welding simulation of aeronautical structures". Journal de Physique IV 120 (dezembro de 2004): 785–92. http://dx.doi.org/10.1051/jp4:2004120091.
Texto completo da fonteXu, Chenglong, e Zhi Liu. "Coupled CFD-FEM Simulation of Steel Box Bridge Exposed to Fire". Advances in Civil Engineering 2022 (10 de janeiro de 2022): 1–12. http://dx.doi.org/10.1155/2022/5889743.
Texto completo da fonteBONETTI, ELENA, PIERLUIGI COLLI e MICHEL FREMOND. "A PHASE FIELD MODEL WITH THERMAL MEMORY GOVERNED BY THE ENTROPY BALANCE". Mathematical Models and Methods in Applied Sciences 13, n.º 11 (novembro de 2003): 1565–88. http://dx.doi.org/10.1142/s0218202503003033.
Texto completo da fonteBogard, Virginie, Philippe Revel e Yannick Hetet. "Optimization of Thermomechanical Loading by the Inverse Method". Journal of Engineering Materials and Technology 129, n.º 2 (26 de junho de 2006): 207–10. http://dx.doi.org/10.1115/1.2400255.
Texto completo da fonteKhodakov, Alexander M., Vitaliy I. Smirnov, Viacheslav A. Sergeev e Ruslan G. Tarasov. "Modeling and analysis of temperature and thermomechanical stress distributions in a multi-chip electronic module". Radioelectronics. Nanosystems. Information Technologies. 16, n.º 2 (25 de abril de 2024): 215–22. http://dx.doi.org/10.17725/j.rensit.2024.16.215.
Texto completo da fonteCollins, Jeff T., Jeremy Nudell, Gary Navrotski, Zunping Liu e Patric Den Hartog. "Establishment of new design criteria for GlidCop® X-ray absorbers". Journal of Synchrotron Radiation 24, n.º 2 (20 de fevereiro de 2017): 402–12. http://dx.doi.org/10.1107/s1600577517001734.
Texto completo da fonteWu, C. T., Wei Hu, Hui-Ping Wang e Hongsheng Lu. "A Robust Numerical Procedure for the Thermomechanical Flow Simulation of Friction Stir Welding Process Using an Adaptive Element-Free Galerkin Method". Mathematical Problems in Engineering 2015 (2015): 1–16. http://dx.doi.org/10.1155/2015/486346.
Texto completo da fonteLi, Haiwang, Dawei Zhang, Ruquan You, Yifan Zou e Song Liu. "Numerical Investigation of the Effects of the Hole Inclination Angle and Blowing Ratio on the Characteristics of Cooling and Stress in an Impingement/Effusion Cooling System". Energies 16, n.º 2 (13 de janeiro de 2023): 937. http://dx.doi.org/10.3390/en16020937.
Texto completo da fonteYuile, Adam, Erik Wiss, David Barth e Steffen Wiese. "Simulation of Mechanical Stresses in BaTiO3 Multilayer Ceramic Capacitors during Desoldering in the Rework of Electronic Assemblies Using a Framework of Computational Fluid Dynamics and Thermomechanical Models". Materials 17, n.º 11 (3 de junho de 2024): 2702. http://dx.doi.org/10.3390/ma17112702.
Texto completo da fonteKenzhegulov, B., Jaroslav Kultan, D. B. Alibiyev e A. Sh Kazhikenova. "Numerical modeling of thermomechanical processes in heat-resistant alloys". Bulletin of the Karaganda University. "Physics" Series 98, n.º 2 (30 de junho de 2020): 101–7. http://dx.doi.org/10.31489/2020ph2/101-107.
Texto completo da fonteZivkovic, Dragoljub, Dragan Milcic, Milan Banic e Pedja Milosavljevic. "Thermomechanical finite element analysis of hot water boiler structure". Thermal Science 16, suppl. 2 (2012): 387–98. http://dx.doi.org/10.2298/tsci120503177z.
Texto completo da fonteWang, Xinwei. "Thermal and Thermomechanical Phenomena in Picosecond Laser Copper Interaction". Journal of Heat Transfer 126, n.º 3 (1 de junho de 2004): 355–64. http://dx.doi.org/10.1115/1.1725092.
Texto completo da fonte