Literatura científica selecionada sobre o tema "Théories des équations intégrales"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Théories des équations intégrales".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Théories des équations intégrales"
Appell, Jürgen, e Espedito de Pascale. "Theoremes de Bornage Pour L'Operateur de Nemyckii Dans Les Espaces Ideaux". Canadian Journal of Mathematics 38, n.º 6 (1 de dezembro de 1986): 1338–55. http://dx.doi.org/10.4153/cjm-1986-068-3.
Texto completo da fonteLederer, Guy, Marc Bonnet e Habibou M. Maitournam. "Modélisation par équations intégrales du frottement sur un demi-espace élasto-plastique". Revue Européenne des Éléments Finis 7, n.º 1-3 (janeiro de 1998): 131–47. http://dx.doi.org/10.1080/12506559.1998.11690470.
Texto completo da fonteCOSTE, O., J. C. PATRAT e R. HENRY. "APPLICATION DES ÉQUATIONS INTÉGRALES D'HELMHOLTZ À L'OPTIMISATION D'UNE SONDE INTENSIMÉTRIQUE 3D SPHÉRIQUE". Le Journal de Physique IV 02, n.º C1 (abril de 1992): C1–669—C1–672. http://dx.doi.org/10.1051/jp4:19921145.
Texto completo da fonteDesprés, Bruno. "Fonctionnelle quadratique et équations intégrales pour les problèmes d'onde harmonique en domaine extérieur". ESAIM: Mathematical Modelling and Numerical Analysis 31, n.º 6 (1997): 679–732. http://dx.doi.org/10.1051/m2an/1997310606791.
Texto completo da fonteChristiansen, Snorre Harald, e Jean-Claude Nédélec. "Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'acoustique". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 330, n.º 7 (abril de 2000): 617–22. http://dx.doi.org/10.1016/s0764-4442(00)00225-1.
Texto completo da fonteChristiansen, Snorre Harald, e Jean-Claude Nédélec. "Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'électromagnétisme". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 331, n.º 9 (novembro de 2000): 733–38. http://dx.doi.org/10.1016/s0764-4442(00)01717-1.
Texto completo da fonteBERTHON, A., e J. C. HOUDEBINE. "DIFFUSION DES CORPS À SYMÉTRIE DE RÉVOLUTION PAR LA MÉTHODE DES ÉQUATIONS INTÉGRALES". Le Journal de Physique Colloques 51, n.º C3 (setembro de 1990): C3–101—C3–110. http://dx.doi.org/10.1051/jphyscol:1990311.
Texto completo da fonteBoulon, M., P. Garnica e M. Eissautier. "Simulation numérique 3D du frottement sol-inclusion en chambre d'étalonnage par équations intégrales aux frontières". Revue Française de Géotechnique, n.º 73 (1995): 35–52. http://dx.doi.org/10.1051/geotech/1995073035.
Texto completo da fonteFries, P. H., e M. Cosnard. "Résolution des équations intégrales des fluides à potentiels intermoléculaires anisotropes par l'algorithme Général de Minimisation du RESte". Journal de Physique 48, n.º 5 (1987): 723–31. http://dx.doi.org/10.1051/jphys:01987004805072300.
Texto completo da fonteCasale, Guy, Lucia Di Vizio e Jean-Pierre Ramis. "Volume à la mémoire de Hiroshi Umemura: “Équations de Painlevé et théories de Galois différentielles”". Annales de la Faculté des sciences de Toulouse : Mathématiques 29, n.º 5 (12 de abril de 2021): i—v. http://dx.doi.org/10.5802/afst.1654.
Texto completo da fonteTeses / dissertações sobre o assunto "Théories des équations intégrales"
Wax, Jean-François. "Détermination de la structure des métaux liquides : comparaison entre théories analytiques, simulation numérique et expérience pour les alcalins". Metz, 1994. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1994/Wax.Jean_Francois.SMZ9444.pdf.
Texto completo da fontePhysics of the structure of liquid metals boasts about a double diversity. Firstly, numerous potentials exist to describe the interactions between particles. Secondly, a large number of approaches have been proposed to deduce the structure from the effective potential. In this work, we study the structure of liquid alkali metals. It is developed around two ideas, attributing a central role to molecular dynamics results. In a first part, the quality of the potential implemented is discussed through a comparison between experimental and simulation results. We used Shaw's model potential and both the Vashishta-Singwi and the Ichimaru-Utsumi local field corrections. It appears that this ab initio potential describes correctly the structure of each alkali metal, including lithium. Molecular dynamic's results seem quite insensitive to the choice of the dielectric function. This confirms the predominant role played by short range forces in determining the structure. The second idea, this study is built on, is an evaluation of different methods available for the description of the structure. By comparison with molecular dynamics, qualities and defaults of both perturbation schemes (ORPA-WCA, ORPA-JA) and integral equations (SMSA) are discussed. In the cases of Na, K, Rb and Cs, these methods produce results near simulation ones. However, the SMSA equation does not show the characteristic drawbacks of perturbation methods. Lithium is particular since any of these analytical methods achieves in matching, even approximately, simulation results. The reasons are not clearly understood. Screening influences S(o) and we underline that its value depends on the way long range interactions are taken into account
Allouch, Chafik. "Approximation par des quasi-interpolants splines et applications aux équations intégrales". Rennes 1, 2011. http://www.theses.fr/2011REN1S059.
Texto completo da fonteIn a linear integral equation of second kind (Fredhom), the kernel function k is continuous on D, or may have algebraic or logarithmic singularities. The aim of this study is the numerical approximation of the solution u by using methods which reduce the problem to solving a system of linear equations. The work presented in this thesis aims on the one hand, to resume existing numerical lmethods in the literature by using spline quasi-interpolants and on the other hand, to develop new superconvergent collocation methods based on interpolants at Gauss points. To highlight our approach, we compare it with other analogous methods and enrich it by numerical tests and illustrative figures
Roturier, Benoît. "Hybridation de formulations différentielles, intégrales et asymptotiques en électromagnétisme". Toulouse, INPT, 1995. http://www.theses.fr/1995INPT107H.
Texto completo da fonteTahrichi, Mohamed. "Formules de quadrature basées sur des quasi-interpolants splines et applications aux équations intégrales". Rennes 1, 2011. http://www.theses.fr/2011REN1S060.
Texto completo da fonteWe are concerned with studying and applying quadrature formulas based on discrete spline quasi-interpolants. Indeed, we have studied, analyzed and constructed new quadrature formulas based on these operators. Then, we applied these formulas to the numerical solution of Fredholm integral equations of the second kind by Nyström method. In order to improve the convergence of this method, we introduced a new method called a superconvergent Nyström method. This latter method is based on quasi-interpolants and the convergence order of its iterated version is twice that of the Nyström method. We extend the Nyström method to the case when the kernel function in the Fredholm integral equation has algebraic or logarithmic singularities. Thus, we solve this equation using a product integration method based on quasi-interpolants and we also solve the associated eigenvalue problem with the help of a change of variables. We also discuss in this thesis one of the most basic problems in geometric modelling : to fit a smooth curve through a sequence of points in Rd, by using quasi-interpolating splines. Finally, we generate and study new cubature formulas based on spline quasi-interpolants in the space of quadratic Powell-Sabin splines on nonuniform triangulations of a polygonal domain in R²
Jakse, Noël. "Contribution à l'étude de la structure et de la thermodynamique des métaux liquides par la théorie des équations intégrales". Metz, 1993. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1993/Jakse.Noel.SMZ9330.pdf.
Texto completo da fonteNowadays, the integral equation theory is one of the most powerful semi-analytic methods to obtain the pair correlation function of a liquid. A detailed study of self-consistent integral equations gives rise to a numerical procedure suitable for liquid metals. Once the effective pair potentiel is derived on the basis of the pseudopotential theory, the structure and thermodynamical properties of alkali metals as well as of the 3D transition metal series are obtained. The use of some recent electron-ion interaction models leads to results in good agreement with experimental data. When performing the isothermal compressibility calculations of the metals under study, it appears that the pair potential deerivatives with respect to density can be neglected. Therefore, the scheme employed here successfully might be extented to alloys as well as be applied to the inverse problem. It is also shown that the nature of the pair potential changes gradually from metallic to non-metallic state when the critical point is approached along the liquid-vapour coexistence curve
Guebbai, Hamza. "Approximation de problèmes fonctionnels : pseudospectre d'un opérateur différentiel et équations intégrales faiblement singulières". Phd thesis, Université Jean Monnet - Saint-Etienne, 2011. http://tel.archives-ouvertes.fr/tel-00693249.
Texto completo da fonteDaquin, Priscillia. "Méthodes quasi-optimales pour la résolution des équations intégrales de frontière en électromagnétisme". Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/19291/1/DAQUIN_Priscillia.pdf.
Texto completo da fonteWargnier, Hervé. "Étude des structures fissurées par la méthode des équations intégrales : développement d'un code de calcul". Toulouse, ENSAE, 1990. http://www.theses.fr/1990ESAE0007.
Texto completo da fonteDemaldent, Edouard. "Etude de schémas de discrétisation d'ordre élevé pour les équations de Maxwell en régime harmonique". Paris 9, 2009. https://bu.dauphine.psl.eu/fileviewer/index.php?doc=2009PA090028.
Texto completo da fonteThis thesis deals with numerical simulation issues, and concerns the study of time- harmonic electromagnetic scattering problems. We are mainly interested in integral re-presentation methods and in simulations that need the use of a direct solver. Their range of application is rapidly limited with classical approximation schemes, since they require a large number of unknowns to achieve accurate results. To overcome this problem, we intend to adapt the spectral finite element method to electromagnetic integral equa-tions, then to the hybrid boundary element - finite element method (BE-FEM). The main advantage of our approach is that the Hdivconforming property (Hdiv-Hcurl within the BE-FEM) is enforced, meanwhile it can be interpreted as a point-based scheme. This al-lows a significant increase of the approximation order, that yields to a dramatical decrease of both the number of unknowns and computational costs, while ensuring the accuracy of the result. Another originality of our study lies in the development of high-order ani-sotropic hexahedral elements, to deal with conducting scatterers coated with a thin layer of material. Key words :computational electromagnetics, Maxwell equations, integral equations, hybrid boundary element - finite element method, method of moments, spectral finite element method, high-order approximation
Phan, Quang Anh. "Contribution à la modélisation des courants de Foucault par la méthode des équations intégrales de frontière". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT080.
Texto completo da fonteIn recent decades, the numerical modelling of electromagnetic devices in the presence of eddy currents has been the subject of a significant number of developments based on different formulations and numerical methods.Among these, integral methods are methods based on the evaluation of remote interactions of active parts via Green's kernels. They thus have the particularity of not requiring the discretization of the air region. In addition to the fact that the number of degrees of freedom to be handled only concerns active regions, these methods show good behaviour in terms of accuracy.The boundary element method is a very competitive numerical method because, unlike volume approaches, it only requires the discretization of the boundary of the domain. However, it is limited to isotropic, homogeneous and linear materials, which is an important limitation. It may still be attractive for some applications where such a hypothesis can be formulated.In this thesis, we will focus on the modeling of the eddy current problem by the method of integral boundary equations subjected to harmonic excitation. This report provides a synthesis of these formulations, including a detailed comparison of the formulations in the literature. Several new formulations are then proposed and developed, with the objective of comparing the integral boundary equations method with other numerical methods (coupled finite element - integral boundary equations method, volume integral method with a surface impedance boundary conditions)
Livros sobre o assunto "Théories des équations intégrales"
Petrovskii, I. G. Théorie des équations différentielles ordinaires et des équations intégrales. Moscou: Mir, 1988.
Encontre o texto completo da fonteVaĭnikko, G. Multidimensional weakly singular integral equations. Berlin: Springer-Verlag, 1993.
Encontre o texto completo da fonteRamis, E. Cours de mathématiques spéciales: Classes préparatoires et enseignement supérieur (1er cycle) : séries équations différentielles et intégrales multiples. Paris: Masson, 1993.
Encontre o texto completo da fonteXie, Mukherjee Yu, ed. Boundary methods: Elements, contours, and nodes. Boca Raton: Dekker/CRC Press, 2005.
Encontre o texto completo da fonteV, Manzhirov A., ed. Handbook of integral equations. 2a ed. Boca Raton: Chapman & Hall/CRC, 2008.
Encontre o texto completo da fonte(Aloknath), Chakrabarti A., ed. Applied singular integral equations. Enfield, NH: Science Publishers, 2011.
Encontre o texto completo da fonteDouchet, Jacques. Analyse: Recueil d'exercices et aide-mémoire. Lausanne: Presses polytechniques et universitaires romandes, 2004.
Encontre o texto completo da fonteHromadka, Theodore V. Stochastic integral equations and rainfall-runoff models. Berlin: Springer-Verlag, 1989.
Encontre o texto completo da fonteR, Glowinski, e Zolésio J. P, eds. Free and moving boundries: Analysis, simulation, and control. Boca Raton: Taylor & Francis, 2007.
Encontre o texto completo da fonte1947-, Rajakumar C., ed. Boundary element method: Application in sound and vibration. Exton, PA: A. A. Balkema Publishers, 2004.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Théories des équations intégrales"
"17. INITIATION AUX PROBLÈMES MAL POSES : ÉQUATIONS INTÉGRALES. SYSTÈMES LINÉAIRES MAL CONDITIONNÉS ET ÉQUATIONS DE CONVOLUTION". In Manuel de calcul numérique appliqué, 273–86. EDP Sciences, 1999. http://dx.doi.org/10.1051/978-2-7598-0252-4.c018.
Texto completo da fonte