Literatura científica selecionada sobre o tema "Textile Electrode"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Textile Electrode".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Textile Electrode"
Guo, Li, Leif Sandsjö, Max Ortiz-Catalan e Mikael Skrifvars. "Systematic review of textile-based electrodes for long-term and continuous surface electromyography recording". Textile Research Journal 90, n.º 2 (4 de julho de 2019): 227–44. http://dx.doi.org/10.1177/0040517519858768.
Texto completo da fonteAn, Xiang, e George Stylios. "A Hybrid Textile Electrode for Electrocardiogram (ECG) Measurement and Motion Tracking". Materials 11, n.º 10 (2 de outubro de 2018): 1887. http://dx.doi.org/10.3390/ma11101887.
Texto completo da fonteSu, Po-Cheng, Ya-Hsin Hsueh, Ming-Ta Ke, Jyun-Jhe Chen e Ping-Chen Lai. "Noncontact ECG Monitoring by Capacitive Coupling of Textiles in a Chair". Journal of Healthcare Engineering 2021 (16 de junho de 2021): 1–8. http://dx.doi.org/10.1155/2021/6698567.
Texto completo da fonteLee, Won Jae, Jin Yeong Park, Hyun Jin Nam e Sung-Hoon Choa. "The development of a highly stretchable, durable, and printable textile electrode". Textile Research Journal 89, n.º 19-20 (12 de fevereiro de 2019): 4104–13. http://dx.doi.org/10.1177/0040517519828992.
Texto completo da fonteTseghai, Granch Berhe, Benny Malengier, Kinde Anlay Fante e Lieva Van Langenhove. "Validating Poly(3,4-ethylene dioxythiophene) Polystyrene Sulfonate-Based Textile Electroencephalography Electrodes by a Textile-Based Head Phantom". Polymers 13, n.º 21 (21 de outubro de 2021): 3629. http://dx.doi.org/10.3390/polym13213629.
Texto completo da fonteKakiage, Kenji, Emi Fujimura, Masayuki Abe, Hajime Shinoda, Toru Kyomen e Minoru Hanaya. "Application of Micro-Metal Textile for Flexible Dye-Sensitized Solar Cell". Key Engineering Materials 459 (dezembro de 2010): 92–99. http://dx.doi.org/10.4028/www.scientific.net/kem.459.92.
Texto completo da fonteSong, Jinzhong, Tianshu Zhou, Zhonggang Liang, Ruoxi Liu, Jianping Guo, Xinming Yu, Zhongping Cao, Chuang Yu, Qingjun Liu e Jingsong Li. "Electrochemical Characteristics Based on Skin-Electrode Contact Pressure for Dry Biomedical Electrodes and the Application to Wearable ECG Signal Acquisition". Journal of Sensors 2021 (15 de setembro de 2021): 1–9. http://dx.doi.org/10.1155/2021/7741881.
Texto completo da fonteEtana, Bulcha Belay, Benny Malengier, Timothy Kwa, Janarthanan Krishnamoorthy e Lieva Van Langenhove. "Evaluation of Novel Embroidered Textile-Electrodes Made from Hybrid Polyamide Conductive Threads for Surface EMG Sensing". Sensors 23, n.º 9 (29 de abril de 2023): 4397. http://dx.doi.org/10.3390/s23094397.
Texto completo da fonteDölker, Eva-Maria, Stephan Lau, Daniel Gröllich, Elke Haase, Sybille Krzywinski, Martin Schmauder e Jens Haueisen. "Techniken zur Bestimmung von Parametern für die elektrische Personenwarnung". ASU Arbeitsmedizin Sozialmedizin Umweltmedizin 2020, n.º 10 (29 de setembro de 2020): 645–52. http://dx.doi.org/10.17147/asu-2010-9157.
Texto completo da fonteAsl, Sara Nazari, Frank Ludwig e Meinhard Schilling. "Noise properties of textile, capacitive EEG electrodes". Current Directions in Biomedical Engineering 1, n.º 1 (1 de setembro de 2015): 34–37. http://dx.doi.org/10.1515/cdbme-2015-0009.
Texto completo da fonteTeses / dissertações sobre o assunto "Textile Electrode"
Backe, Carin. "Enhancing textile electrode performance : Regulating moisture management through textile structure". Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-12389.
Texto completo da fonteTaji, Bahareh. "Reconstruction of ECG Signals Acquired with Conductive Textile Eletrodes". Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/26303.
Texto completo da fonteEuler, Luisa. "Impedance and Stimulation Comfort of Knitted Electrodes for Neuromuscular Electrical Stimulation (NMES) : Influence of electrode construction and pressure application to the electrode". Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-23896.
Texto completo da fonteLee, Graham. "An investigation into the feasibility of the integration of microwave circuitry into a woven textile". Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/13560.
Texto completo da fonteJafari, Ehsan. "Novel Approaches in Functional Electrical Stimulation for Rehabilitation : Development, Analysis, and Optimization". Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0008.
Texto completo da fonteThis thesis aims to overcome the limitations of functional electrical stimulation (FES) through a multifaceted novel approach that concentrates on developing transcutaneous electrodes, stimulation strategies, and biomechanical optimization perspectives. The first study investigates the effectiveness of garment-embedded textile electrodes, used with a moisturizing lotion, against conventional self-adhesive hydrogel electrodes. The evaluation encompasses aspects such as stimulation comfort, temporal consistency, efficiency, and electrical impedance behavior under isometric conditions. Participants in the study underwent tests with both electrode types, evaluating parameters like motor threshold intensity, burning sensation intensity, and maximum tolerable intensity. The results indicate that textile electrodes, when supplemented with lotion, perform comparably to hydrogel electrodes in terms of comfort, consistency, and efficiency. The next study investigates the impact of spatially distributed sequential stimulation (SDSS) at high and moderate intensities on reducing fatigue in individuals with spinal cord injury. The study, focusing on the quadriceps muscle group, found that moderate-intensity SDSS is significantly more effective than high-intensity SDSS. Additionally, a case study was conducted to assess the differences in power generation and fatigue levels between FES cycling using SDSS and a single electrode setup. This involved stimulating the paralyzed quadriceps muscles of four participants over multiple days during motor-assisted FES cycling. The results indicated that SDSS not only generated more power compared to the single electrode setup but did so without significantly impacting fatigue levels. The last study focuses on the optimization of the cycling biomechanical properties and stimulation pattern to achieve maximum output power with minimum applied stimulation. In this work, an easy-to-use and precise muscle model in conjunction with Jacobian-based torque transfer functions was adopted to determine the optimal seating position, trunk angle, crank arm length, and stimulation intervals. Furthermore, the impact of muscle force-velocity factor in finding the optimal seating position and stimulation intervals was investigated. The simulation models showed the trivial effect of the force-velocity factor on the resulting optimal seating position of six healthy simulated subjects. We believe that the contributions of this thesis will increase the efficacy of FES as a rehabilitation technique
Ekhagen, Sebastian. "Stability of electron acceptor materials for organic solar cells : a work function study of C60/C70 derivatives and N2200". Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik (from 2013), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-72727.
Texto completo da fonteMarquez, Juan Carlos. "On the Feasibility of Using Textile Electrodes for Electrical Bioimpedance Measurements". Licentiate thesis, Högskolan i Borås, Institutionen Ingenjörshögskolan, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-3607.
Texto completo da fonteThesis Supervisors: Kaj Lindecrantz and Fernando Seoane
Sponsorship:
Mexican CONACYT
Jenkins, L. "Development of environmental scanning electron microscopy for textile hydration studies". Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.605085.
Texto completo da fonteAwad, Hernández Fahmi. "Desafíos de la capa física para el monitoreo y control remoto de pacientes". Tesis, Universidad de Chile, 2016. http://repositorio.uchile.cl/handle/2250/142483.
Texto completo da fonteEn la actualidad existe una gran necesidad de monitorear pacientes en forma remota dado que hay capacidades limitadas en centros médicos, tanto de profesionales como de instrumental e insumos. Más allá de esto, respecto al electrocardiograma en particular, se utiliza un método en el cual se coloca doce electrodos en el cuerpo del paciente, además de filtrar los datos con máquinas bastante grandes, lo que se traduce en incomodidad para el sujeto y una maquinaria costosa que puede ser reemplazada. Este trabajo se enfoca en el desarrollo de un sistema de amplificación y filtrado simplificado para un electrocardiograma utilizando el método de Einthoven, y en la implementación de electrodos de una composición química diferente, denominados PEDOT:PSS. Se trabaja con éstos como reemplazo de los comúnmente utilizados dado que son hidrofílicos, lavables y no producen irritación, por lo cual son considerados un avance respecto al ámbito invasivo de la detección. La amplificación sin ruido es una parte crítica en el diseño del circuito, por lo tanto es imperativo obtener el filtrado necesario. Se diseñan circuitos para la inversión de voltaje necesaria, el amplificador y los filtros pasa bajos de 150 Hz, pasa altos de 0.1 Hz y notch de 50 Hz a utilizar. Los resultados obtenidos se pueden organizar de la siguiente forma: inicialmente se obtiene una señal alimentando con 3 y 5 V, con y sin filtro notch, en una prueba con sensores comunes, midiendo con osciloscopio Rigol. Luego se analiza el mismo circuito alimentado con baterías y medido con el DSO Nano V3 y finalmente se examina con un electrodo PEDOT:PSS. Se opta por una alimentación independiente ya que se disminuye el ruido y se tiene un sistema aislado de la red. Se describe la construcción de los nuevos electrodos y se presentan los experimentos realizados con éstos. Se concluye por medio de una prueba de concepto que es posible obtener un sistema ECG no invasivo, pero que al tener una fuente dependiente de la red eléctrica existe una alta filtración de ruido de 50 Hz. La señal obtenida con el circuito y el electrodo PEDOT:PSS es satisfactoria y similar a la representación con electrodos convencionales, alimentando con un voltaje independiente de la red. Se indica los trabajos futuros respecto a esta memoria.
ACHILLI, ANDREA. "Conception, development and evaluation of polymer-based screen-printed textile electrodes for biopotential monitoring". Doctoral thesis, Università degli studi di Genova, 2019. http://hdl.handle.net/11567/977988.
Texto completo da fonteLivros sobre o assunto "Textile Electrode"
Mahaffy, Philip Robert. Replacement of the existing combined hydraulic and electro-mechanical controls on the Autoleveller system fitted to the Lummus Mackie Mark 3 Speedmack textile machine, with the latest in AC Servo drive technology, an industrial microprocessor and electronic hardware. [S.l: The Author], 1992.
Encontre o texto completo da fonteZhang, H., X. M. Tao e P. J. Xu. Textile-Structured Electrodes for Electrocardiogram. Taylor & Francis Group, 2009.
Encontre o texto completo da fonteFibres: Microscopy of archaeological textiles and furs. Budapest: Archaeolingua Alapítvány, 2016.
Encontre o texto completo da fonteMonitorización cardíaca mediante dispositivos Holter con electrodos textiles para detección de fibrilación auricular tras ictus criptogénico. Instituto de Salud Carlos III (ISCIII), 2022. http://dx.doi.org/10.4321/repisalud.14666.
Texto completo da fonteCapítulos de livros sobre o assunto "Textile Electrode"
Goto, Daisuke, e Naruhiro Shiozawa. "Can Textile Electrode for ECG Apply to EMG Measurement?" In IFMBE Proceedings, 431–34. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-9038-7_81.
Texto completo da fonteTuohimäki, Katariina, Shadi Mahdiani, Vala Jeyhani, Antti Vehkaoja, Pekka Iso-Ketola, Jukka Vanhala, Jari Viik e Matti Mäntysalo. "Electrode Comparison for Textile-Integrated Electrocardiogram and Impedance Pneumography Measurement". In EMBEC & NBC 2017, 302–5. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5122-7_76.
Texto completo da fonteXiong, Fan, Dongyi Chen, Zhenghao Chen, Chen Jin e Shumei Dai. "Impedance Characteristics of the Skin-Electrode Interface of Dry Textile Electrodes for Wearable Electrocardiogram". In Internet of Things, 343–56. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02819-0_26.
Texto completo da fonteDrits, Victor A. "Oblique-Texture Electron Diffraction". In Electron Diffraction and High-Resolution Electron Microscopy of Mineral Structures, 149–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71729-1_9.
Texto completo da fonteMason, Jeremy K., e Christopher A. Schuh. "Representations of Texture". In Electron Backscatter Diffraction in Materials Science, 35–51. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-88136-2_3.
Texto completo da fonteHao, Liu, e Xiaoming Tao. "Evaluation Methods and Instruments of Dry Biopotential Electrodes". In Handbook of Smart Textiles, 775–808. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-4451-45-1_33.
Texto completo da fonteHao, Liu, e Tao Xiaoming. "Evaluation Methods and Instruments of Dry Biopotential Electrodes". In Handbook of Smart Textiles, 1–28. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-4451-68-0_33-1.
Texto completo da fonteElsheikh, Mahmoud A., Hazem I. Saleh, Hany S. Guirguis e Karim Taha. "Treatment of Textile Dyes Wastewater Using Electro-Coagulation". In Computational and Experimental Simulations in Engineering, 175–87. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27053-7_17.
Texto completo da fonteRai, Newton, Habibuddin Shaik, N. Veerapandi, Veda Sandeep Nagaraj e S. Veena. "Carbon-Based Textile Dry and Flexible Electrodes for ECG Measurement". In Advances in Renewable Energy and Electric Vehicles, 37–53. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1642-6_4.
Texto completo da fonteThite, Amol G., Kumar Krishnanand e Prasanta K. Panda. "Recent Advances in Electron Beam Processing of Textile Materials". In Materials Horizons: From Nature to Nanomaterials, 457–94. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9048-9_14.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Textile Electrode"
Oliveira, Cristina C., Jose Machado da Silva, Isabel G. Trindade e Frederico Martins. "Characterization of the electrode-skin impedance of textile electrodes". In 2014 Conference on Design of Circuits and Integrated Systems (DCIS). IEEE, 2014. http://dx.doi.org/10.1109/dcis.2014.7035526.
Texto completo da fonteEtana, Bulcha Belay, Benny Malengier, Janarthanan Krishnamoorthy e Lieve Van Langenhove. "Improved Skin–Electrode Impedance Characteristics of Embroidered Textile Electrodes for Sustainable Long-Term EMG Monitoring". In E-Textiles 2023. Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/engproc2023052029.
Texto completo da fonteTaji, Bahareh, Shervin Shirmohammadi e Voicu Groza. "Measuring skin-electrode impedance variation of conductive textile electrodes under pressure". In 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2014. http://dx.doi.org/10.1109/i2mtc.2014.6860909.
Texto completo da fonteKuznetsov, Ivan A., Warren Jasper, Srinivasan Rasipuram, Andrey V. Kuznetsov, Alan Brown e Alexei V. Saveliev. "Development of Plasma Textile for Nanoparticle Filtration and Bacterial Deactivation". In ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icnmm2012-73019.
Texto completo da fonteAghaei, Ali, Saba Sajjadieh, Bahareh Ghalebi, Fatemeh Irannejad e Mohsen Shanbeh. "A Single-Electrode, Textile-Based, Flexible Capacitive Pressure Sensor Array". In E-Textiles 2023. Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/engproc2023052013.
Texto completo da fonteSimonič, Marjana. "Electrocoagulation Implementation for Textile Wastewater Treatment Processes". In International Conference on Technologies & Business Models for Circular Economy. University of Maribor Press, 2023. http://dx.doi.org/10.18690/um.fkkt.1.2023.6.
Texto completo da fonteLiu, Meijing, Zeeshan Ahmed, Neil Grabham, Stephen Beeby, John Tudor e Kai Yang. "An All Dispenser Printed Electrode Structure on Textile for Wearable Healthcare". In E-Textiles 2021. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/engproc2022015016.
Texto completo da fonteTakamatsu, Seiichi, e Toshihiro Itoh. "Mechanical characterization of biomedical electrode on knit textile". In 2016 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP). IEEE, 2016. http://dx.doi.org/10.1109/dtip.2016.7514836.
Texto completo da fonteZhang, Hui, Weiru Li, Xiaoming Tao, Pengjun Xu e Hao Liu. "Textile-structured human body surface biopotential signal acquisition electrode". In 2011 4th International Congress on Image and Signal Processing (CISP). IEEE, 2011. http://dx.doi.org/10.1109/cisp.2011.6100739.
Texto completo da fonteAileni, Raluca maria. "SOFTWARE BASED ON GRID NETWORK FOR TEXTILE ELECTROCONDUCTIVITY AND RESISTIVITY ANALYZE". In eLSE 2015. Carol I National Defence University Publishing House, 2015. http://dx.doi.org/10.12753/2066-026x-15-274.
Texto completo da fonteRelatórios de organizações sobre o assunto "Textile Electrode"
Zhai, Tongguang, Chi-Sing Man e James Morris. Field Emission Gun Scanning Electron Microscopy with Electron Back Scatter Diffraction for Texture, Formability and Fatigue Studies of Advanced Materials. Fort Belvoir, VA: Defense Technical Information Center, maio de 2007. http://dx.doi.org/10.21236/ada484492.
Texto completo da fonteZhu, M. J., Aubrey F. Mendonca, E. J. Lee, K. C. Nam, M. Du, H. A. Ismail e Dong U. Ahn. Effects of Electron Beam Irradiation and Antimicrobials on the Volatiles, Color and Texture of Ready-to-Eat Turkey Breast Roll. Ames (Iowa): Iowa State University, janeiro de 2005. http://dx.doi.org/10.31274/ans_air-180814-1108.
Texto completo da fonteBanin, Amos, Joseph Stucki e Joel Kostka. Redox Processes in Soils Irrigated with Reclaimed Sewage Effluents: Field Cycles and Basic Mechanism. United States Department of Agriculture, julho de 2004. http://dx.doi.org/10.32747/2004.7695870.bard.
Texto completo da fonte