Literatura científica selecionada sobre o tema "Tetraploid"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Tetraploid".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Tetraploid"
Jan, C. C., J. M. Chandler e S. A. Wagner. "Induced tetraploidy and trisomic production of Helianthus annuus L." Genome 30, n.º 5 (1 de outubro de 1988): 647–51. http://dx.doi.org/10.1139/g88-109.
Texto completo da fonteWeber, Gregory M., Mark A. Hostuttler, Kenneth J. Semmens e Brian A. Beers. "Induction and viability of tetraploids in brook trout (Salvelinus fontinalis)". Canadian Journal of Fisheries and Aquatic Sciences 72, n.º 10 (outubro de 2015): 1443–49. http://dx.doi.org/10.1139/cjfas-2014-0536.
Texto completo da fontePanopoulos, Andreas, Cristina Pacios-Bras, Justin Choi, Mythili Yenjerla, Mark A. Sussman, Rati Fotedar e Robert L. Margolis. "Failure of cell cleavage induces senescence in tetraploid primary cells". Molecular Biology of the Cell 25, n.º 20 (15 de outubro de 2014): 3105–18. http://dx.doi.org/10.1091/mbc.e14-03-0844.
Texto completo da fonteBothmer, Roland von, Jan Flink e Tomas Landström. "Meiosis in interspecific Hordeum hybrids. IV. Tetraploid (4x × 4x) hybrids". Genome 30, n.º 4 (1 de agosto de 1988): 479–85. http://dx.doi.org/10.1139/g88-080.
Texto completo da fonteCompton, Michael E., D. J. Gray e G. W. Elmstrom. "150 THE IDENTIFICATION OF TETRAPLOID REGENERANTS FROM COTYLEDONS OF DIPLOID WATERMELON AND THEIR USE IN BREEDING TRIPLOID HYBRIDS". HortScience 29, n.º 5 (maio de 1994): 450c—450. http://dx.doi.org/10.21273/hortsci.29.5.450c.
Texto completo da fonteSMITH, K. F., R. J. SIMPSON, R. A. CULVENOR, M. O. HUMPHREYS, M. P. PRUD'HOMME e R. N. ORAM. "The effects of ploidy and a phenotype conferring a high water-soluble carbohydrate concentration on carbohydrate accumulation, nutritive value and morphology of perennial ryegrass (Lolium perenne L.)". Journal of Agricultural Science 136, n.º 1 (fevereiro de 2001): 65–74. http://dx.doi.org/10.1017/s0021859600008480.
Texto completo da fonteHassan, Jahidul, Ikuo Miyajima, Yukio Ozaki, Yuki Mizunoe, Kaori Sakai e Wasimullah Zaland. "Tetraploid Induction by Colchicine Treatment and Crossing with a Diploid Reveals Less-Seeded Fruit Production in Pointed Gourd (Trichosanthes dioica Roxb.)". Plants 9, n.º 3 (17 de março de 2020): 370. http://dx.doi.org/10.3390/plants9030370.
Texto completo da fonteMahony, MJ, SC Donnellan e JD Roberts. "An Electrophoretic Investigation of Relationships of Diploid and Tetraploid Species of Australian Desert Frogs Neobatrachus (Anura: Myobatrachidae)". Australian Journal of Zoology 44, n.º 6 (1996): 639. http://dx.doi.org/10.1071/zo9960639.
Texto completo da fontede Sousa, Joana Teixeira, Standish K. Allen, Brittany M. Wolfe e Jessica Moss Small. "Mitotic instability in triploid and tetraploid one-year-old eastern oyster, Crassostrea virginica, assessed by cytogenetic and flow cytometry techniques". Genome 61, n.º 2 (fevereiro de 2018): 79–89. http://dx.doi.org/10.1139/gen-2017-0173.
Texto completo da fonteMuthoni, Jane, Hussein Shimelis e Rob Melis. "Production of hybrid potatoes: Are heterozygosity and ploidy levels important?" Australian Journal of Crop Science, n.º 13(05) 2019 (20 de maio de 2019): 687–94. http://dx.doi.org/10.21475/ajcs.19.13.05.p1280.
Texto completo da fonteTeses / dissertações sobre o assunto "Tetraploid"
Crockford, Andrew. "Deciphering tetraploid tolerance". Thesis, University College London (University of London), 2016. http://discovery.ucl.ac.uk/1475158/.
Texto completo da fonteMuramoto, H. "Tetraploid Caducous Bract Cotton". College of Agriculture, University of Arizona (Tucson, AZ), 1985. http://hdl.handle.net/10150/203924.
Texto completo da fonteTavakkol, Afshari Reza. "Variation in seed dormancy of tetraploid wheat". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ37916.pdf.
Texto completo da fonteKuffer, Christian. "Proliferation and arrest of human tetraploid cells". Diss., Ludwig-Maximilians-Universität München, 2015. http://nbn-resolving.de/urn:nbn:de:bvb:19-182558.
Texto completo da fonteErroneously arising tetraploid mammalian cells are chromosomally unstable and may facilitate cell transformation. An increasing body of evidence suggests that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest, however, the triggers of this arrest have thus far not been identified. To elucidate the timing and causes of this arrest, time-lapse live cell imaging was performed to track the fate of individual cells immediately after tetraploidization. Newly formed tetraploid cells can progress through one cell cycle, but the majority of cells arrest or die in the subsequent G1 stage, with the fate of these tetraploid cells determined by the preceding mitosis. Daughter cells arising from defective mitosis accumulated p53 in the nucleus, which led to irreversible cell cycle arrest or death. Furthermore this p53 accumulation coincides and correlates with an increase of the oxidative DNA damage marker 8-OHdG, suggesting an increase in reactive oxygen species (ROS), but does not coincide with the phosphorylation of H2AX (γ-H2AX), a marker for canonical DNA damage. Using RNA interference and chemical genetics, several p53 activating kinases were tested for their contribution to the cell cycle arrest of tetraploid cells. Of the tested kinases, only ATM was shown to play a role in the activation of p53 after defects in mitosis. ATM kinase is a DNA damage-responsive kinase, however, it has been shown that increased ROS levels activate ATM in a non-canonical way. To gain further insights into arrest of tetraploid cells, an unbiased genome-wide esiRNA screen was performed to analyze cell proliferation after induced tetraploidization. Using FUCCI cell cycle probes, combined with DNA content cell cycle profiling, allowed an image-based assay to examine tetraploid and diploid cells side-by-side. This novel approach enabled us to screen for genes that specifically restricts or enhances cell proliferation after tetraploidization, if inhibited by esiRNA mediated knockdown. From the primary screen we identified 1159 genes that decreased and 431 genes that increased the cell proliferation after tetraploidization, if knocked down by esiRNA. From the 431 genes that increased proliferation upon knockdown, 374 were selected and subjected to a re-screen. Of these 374 genes, we were able to confirm the results for 158 of the genes. A bioinformatics analysis of the 158 genes for which the phenotype were confirmed by the re-screen revealed a significant enrichment of genes involved in DNA replication, the canonical Wnt signaling pathway and in pathways linked to cancer. Among the latter, CCDC6 is particularly interesting, because its gene product is a target of the ATM kinase and an upstream regulator of the tumor suppressor 14-3-3σ. Moreover, by comparing the results of the primary screen with the data of the “Project Archilles”, which measured the proliferation in genome wide pooled-shRNA screens for 108 cancer cell lines, 18 genes were identified that are essential for the proliferation of cells after tetraploidization, as well as for the proliferation of cancer cell lines that derive from cancer types with a high incidence for chromosomal instability (CIN). Taken together, the presented data builds an excellent resource not only for elucidating how the arrest after tetraploidization is mediated, but also to identify novel potential therapeutic targets against tumors with CIN, which are frequently resistant to many of today’s anti-cancer therapies.
Khan, Javed Ahmad. "Salinity effects on 4D recombinant tetraploid wheat genotypes". Thesis, Bangor University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321525.
Texto completo da fonteDiffoot, Nanette. "Corydoras aeneus: a diploid-tetraploid fish species complex". Thesis, Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/101468.
Texto completo da fonteM.S.
Morgan, Christopher Henry. "Coordination of meiotic recombination in diploid and tetraploid arabidopsis". Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/7092/.
Texto completo da fonteSchuck, Susan M., e Steven P. McLaughlin. "Flowering Phenology and Outcrossing in Tetraploid Grindelia camporum Green". University of Arizona (Tucson, AZ), 1988. http://hdl.handle.net/10150/609102.
Texto completo da fonteStone, Harriet. "Evolution and conservation of tetraploid Euphrasia L. in Britain". Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7740.
Texto completo da fonteAcuna, Carlos A. "Bahiagrass germplasm reproductive characterization and breeding at the tetraploid level". [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0014399.
Texto completo da fonteLivros sobre o assunto "Tetraploid"
Bauernfeind, Marion. Zur Entwicklungsfähigkeit tetraploider Zellen in diploid/tetraploid-Chimären der Maus. Konstanz: Hartung-Gorre, 1989.
Encontre o texto completo da fonteCanada. Dept. of Fisheries and Oceans. Biological Sciences Branch. A bibliography of tetraploidy in fish (1964-1991). Vancouver, B.C: Dept. of Fisheries and Oceans, 1992.
Encontre o texto completo da fonteKosina, Romuald. Tetraploids of the genus Triticum in the light of caryopsis structure. Wrocław: Wydawnictwo Uniwersytetu Wrocławskiego, 1995.
Encontre o texto completo da fonteAdiwilaga, Kartika Dorothea. Introgression of tetraploid Mexican wild species germplasm into cultivated potato gene pool. 1989.
Encontre o texto completo da fonteKHATEFOV, E. B., V. I. KHOREVA, B. R. SHOMAKHOV, R. S. KUSHKHOVA, Z. T. KHASHIROVA, R. A. KUDAEV e A. KH GYAURGIEV. REDIPLOID MAIZE LINES: (RESYNTHESIZED FROM A TETRAPLOID POPULATION FOR BREEDING HYBRID MAIZE). N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 2021. http://dx.doi.org/10.30901/978-5-907145-75-7.
Texto completo da fonteDeNoma, Jeanine Streeter. The feasibility of using diploid by tetraploid crosses to obtain triploid hops (Humulus lupulus L.). 1994.
Encontre o texto completo da fonteRomano, Patrick Robert. Restriction endonuclease mapping of rRNA genes and the origin of the tetraploid tree frog Hyla versicolor. 1985.
Encontre o texto completo da fonteLiao, Shaoyi Alexander. Restriction mapping and molecular cloning of ribosomal RNA genes from the diploid/tetraploid frog species pair Hyla chrysoscelis/Hyla versicolor. 1988.
Encontre o texto completo da fonteMelzheimer, Volker, e Elvira Hörandl. Die Ranunculaceae der Flora von Zentraleuropa: Ranunculus sect. Auricomus. Universitätsbibliothek Johann Christian Senckenberg, 2022. http://dx.doi.org/10.21248/gups.68734.
Texto completo da fonteCapítulos de livros sobre o assunto "Tetraploid"
Taylor, N. L., e K. H. Quesenberry. "Tetraploid Red Clover". In Red Clover Science, 161–69. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8692-4_13.
Texto completo da fonteGertsenstein, Marina. "Tetraploid Complementation Assay". In Springer Protocols Handbooks, 357–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-662-45763-4_16.
Texto completo da fonteAkinroluyo, O., G. Statkevičiūtė e V. Kemešytė. "Tetraploid Induction in Lolium multiflorum". In Breeding Grasses and Protein Crops in the Era of Genomics, 73–77. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89578-9_13.
Texto completo da fonteJoppa, L. R. "Aneuploid Analysis in Tetraploid Wheat". In Agronomy Monographs, 255–67. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015. http://dx.doi.org/10.2134/agronmonogr13.2ed.c11.
Texto completo da fonteLapinski, Boguslaw, Barbara Apolinarska, Grzegorz Budzianowski, Malgorzata Cyran e Maria Rakowska. "An Attempt at Tetraploid Triticale Improvement". In Triticale: Today and Tomorrow, 627–34. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0329-6_81.
Texto completo da fonteShenk, Elizabeth M., e Neil J. Ganem. "Generation and Purification of Tetraploid Cells". In Methods in Molecular Biology, 393–401. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3542-0_24.
Texto completo da fonteApolinarska, Barbara. "Different Chromosome Combinations on Tetra- and Hexaploid Level from Hybrids of Tetraploid Rye × Tetraploid Triticale". In Triticale: Today and Tomorrow, 189–94. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0329-6_23.
Texto completo da fonteMünnich, C., M. Klaas, V. Bartels e C. Gebhardt. "Creation of Novel Tetraploid Miscanthus sinensis Genotypes". In Perennial Biomass Crops for a Resource-Constrained World, 119–26. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44530-4_11.
Texto completo da fontePfeiffer, Martin J., Martin Stehling, Anna Jauch e Michele Boiani. "ES Cell Lines from Tetraploid Mouse Blastocysts". In Advances in Stem Cell Research, 1–16. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-940-2_1.
Texto completo da fonteZwierzykowski, Z., W. Jokś e B. Naganowska. "Potential of Tetraploid × Festulolium (Festuca Pratensis × Lolium Multiflorum)". In Developments in Plant Breeding, 299–300. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0966-6_51.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Tetraploid"
Gravendeel, Lonneke A., Nanne K. Kloosterhof, Linda B. Bralten, Johan M. Kros, Clemens M. Dirven, Peter A. Sillevis Smitt, Martin J. van den Bent e Pim J. French. "Abstract 3932: Tetraploid gliomas share molecular features with pilocytic astrocytomas". In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-3932.
Texto completo da fonteRekashus, Eduard, e Anna Makaeva. "Choosing parental pairs for development initial material of alsike clover". In Multifunctional adaptive feed production 27 (75). ru: Federal Williams Research Center of Forage Production and Agroecology, 2022. http://dx.doi.org/10.33814/mak-2022-27-75-16-22.
Texto completo da fontePecciarini, Lorenza, Valeria De Pascali, Ilaria Francaviglia, Anna Talarico, Chiara Iacona, Massimo Freschi, Maria Giulia Cangi e Claudio Doglioni. "Abstract 756: Molecular characterization of triploid and tetraploid urine FISH samples". In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-756.
Texto completo da fonteGanem, Neil J., Kevin P. O'Rourke e David Pellman. "Abstract 2941: Defining novel pathways that arrest genetically unstable tetraploid cells". In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-2941.
Texto completo da fonteКутузова, Анэля, Anel Kutuzova, Елена Проворная, Elena Provornaya, Надежда Цыбенко e Nadezhda Tsybenko. "EFFICIENCY OF ANTHROPOGENIC ENERGY EXPENDITURES IN CREATION AND USE OF LEGUME-CEREAL GRASS OF CULTURAL PASTURE". In Multifunctional adaptive feed production. ru: Federal Williams Research Center of Forage Production and Agroecology, 2019. http://dx.doi.org/10.33814/mak-2019-21-69-62-69.
Texto completo da fonteVan Spijk, Ab C., Steve Barnes e Jan Pertus. "Monitoring the nematode resistance gene in tetraploid pollinators by using genetic markers". In 33rd Biennial Meeting of American Society of Sugarbeet Technologist. ASSBT, 2005. http://dx.doi.org/10.5274/assbt.2005.29.
Texto completo da fonteYuan xiangyue e Chen Zhongjia. "Experimental research on cutting force and cutting parameters of Tetraploid Black Locust". In 2011 International Conference on New Technology of Agricultural Engineering (ICAE). IEEE, 2011. http://dx.doi.org/10.1109/icae.2011.5943770.
Texto completo da fonteKuroda, Taruho S., Regina K. Dagher e David Pellman. "Abstract A79: Genome‐wide RNAi screen for tetraploid‐specific lethality in cancer cells". In Abstracts: First AACR International Conference on Frontiers in Basic Cancer Research--Oct 8–11, 2009; Boston MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/0008-5472.fbcr09-a79.
Texto completo da fonteNovoselov, Mikhail, Lyubov Drobysheva e Ol'ga Starshinova. "Results of competitive variety testing of red clover of tetraploid and diploid types". In Multifunctional adaptive feed production 27 (75). ru: Federal Williams Research Center of Forage Production and Agroecology, 2022. http://dx.doi.org/10.33814/mak-2022-27-75-9-15.
Texto completo da fonteSorina, Popescu. "THE KNOX GENES INVOLVEMENT IN THE DEVELOPMENT OF MULTILEAFLED TRAIT ON TETRAPLOID MEDICAGO SATIVA". In 14th SGEM GeoConference on NANO, BIO AND GREEN � TECHNOLOGIES FOR A SUSTAINABLE FUTURE. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b61/s25.075.
Texto completo da fonteRelatórios de organizações sobre o assunto "Tetraploid"
Ladizinsky, Gideon, e Frederic Kolb. Transformation of the Wild Tetraploid Oats into Domesticated Forms. United States Department of Agriculture, novembro de 1994. http://dx.doi.org/10.32747/1994.7604296.bard.
Texto completo da fonteDubcovsky, Jorge, Tzion Fahima e Ann Blechl. Positional cloning of a gene responsible for high grain protein content in tetraploid wheat. United States Department of Agriculture, setembro de 2003. http://dx.doi.org/10.32747/2003.7695875.bard.
Texto completo da fonteDevos, Katrien, Jeff Bennetzen, Ali Missaoui e Paul Schliekelman. Unraveling the Genetics of Two Key Biomass Traits that Differentiate Upland and Lowland Tetraploid Switchgrass Ecotypes, Colonization by Mycorrhizal Fungi and Frost Tolerance. Office of Scientific and Technical Information (OSTI), dezembro de 2020. http://dx.doi.org/10.2172/1735505.
Texto completo da fonteAdelberg, Jeff, Halina Skorupska, Bill Rhodes, Yigal Cohen e Rafael Perl-Treves. Interploid Hybridization of Cucumis melo and C. metuliferus. United States Department of Agriculture, dezembro de 1999. http://dx.doi.org/10.32747/1999.7580673.bard.
Texto completo da fonteVeilleux, Richard E., Jossi Hillel, A. Raymond Miller e David Levy. Molecular Analysis by SSR of Genes Associated with Alkaloid Synthesis in a Segregating Monoploid Potato Family. United States Department of Agriculture, maio de 1994. http://dx.doi.org/10.32747/1994.7570550.bard.
Texto completo da fonteTel-Zur, Neomi, e Jeffrey J. Doyle. Role of Polyploidy in Vine Cacti Speciation and Crop Domestication. United States Department of Agriculture, janeiro de 2012. http://dx.doi.org/10.32747/2012.7697110.bard.
Texto completo da fonteDubcovsky, Jorge, Tzion Fahima, Ann Blechl e Phillip San Miguel. Validation of a candidate gene for increased grain protein content in wheat. United States Department of Agriculture, janeiro de 2007. http://dx.doi.org/10.32747/2007.7695857.bard.
Texto completo da fonteFeldman, Moshe, Eitan Millet, Calvin O. Qualset e Patrick E. McGuire. Mapping and Tagging by DNA Markers of Wild Emmer Alleles that Improve Quantitative Traits in Common Wheat. United States Department of Agriculture, fevereiro de 2001. http://dx.doi.org/10.32747/2001.7573081.bard.
Texto completo da fonteGray, Dennis, e Victor Gaba. Genotype, Explant and Growth Regulator Effects in the Determination of Adventitious Regeneratin in Curcurbits, in Aid of Genetic Transformation. United States Department of Agriculture, junho de 1992. http://dx.doi.org/10.32747/1992.7561060.bard.
Texto completo da fonte