Artigos de revistas sobre o tema "Tensor PCA"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Tensor PCA".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Zare, Ali, Alp Ozdemir, Mark A. Iwen e Selin Aviyente. "Extension of PCA to Higher Order Data Structures: An Introduction to Tensors, Tensor Decompositions, and Tensor PCA". Proceedings of the IEEE 106, n.º 8 (agosto de 2018): 1341–58. http://dx.doi.org/10.1109/jproc.2018.2848209.
Texto completo da fonteWang, An-Dong, Zhong Jin e Jing-Yu Yang. "A faster tensor robust PCA via tensor factorization". International Journal of Machine Learning and Cybernetics 11, n.º 12 (24 de junho de 2020): 2771–91. http://dx.doi.org/10.1007/s13042-020-01150-2.
Texto completo da fonteJagannath, Aukosh, Patrick Lopatto e Léo Miolane. "Statistical thresholds for tensor PCA". Annals of Applied Probability 30, n.º 4 (agosto de 2020): 1910–33. http://dx.doi.org/10.1214/19-aap1547.
Texto completo da fonteBen Arous, Gérard, Reza Gheissari e Aukosh Jagannath. "Algorithmic thresholds for tensor PCA". Annals of Probability 48, n.º 4 (julho de 2020): 2052–87. http://dx.doi.org/10.1214/19-aop1415.
Texto completo da fonteJiang, Bo, Shiqian Ma e Shuzhong Zhang. "Low-M-Rank Tensor Completion and Robust Tensor PCA". IEEE Journal of Selected Topics in Signal Processing 12, n.º 6 (dezembro de 2018): 1390–404. http://dx.doi.org/10.1109/jstsp.2018.2873144.
Texto completo da fonteLiu, Cong, Xu Wei-sheng e Wu Qi-di. "Tensorial Kernel Principal Component Analysis for Action Recognition". Mathematical Problems in Engineering 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/816836.
Texto completo da fonteOuerfelli, Mohamed, Mohamed Tamaazousti e Vincent Rivasseau. "Random Tensor Theory for Tensor Decomposition". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 7 (28 de junho de 2022): 7913–21. http://dx.doi.org/10.1609/aaai.v36i7.20761.
Texto completo da fonteZhang, Hongjun, Peng Li, Weibei Fan, Zhuangzhuang Xue e Fanshuo Meng. "Tensor Multi-Clustering Parallel Intelligent Computing Method Based on Tensor Chain Decomposition". Computational Intelligence and Neuroscience 2022 (6 de setembro de 2022): 1–12. http://dx.doi.org/10.1155/2022/7396185.
Texto completo da fonteQiu, Yuning, Guoxu Zhou, Zhenhao Huang, Qibin Zhao e Shengli Xie. "Efficient Tensor Robust PCA Under Hybrid Model of Tucker and Tensor Train". IEEE Signal Processing Letters 29 (2022): 627–31. http://dx.doi.org/10.1109/lsp.2022.3143721.
Texto completo da fonteYang, Sihai, Xian-Hua Han e Yen-Wei Chen. "GND-PCA Method for Identification of Gene Functions Involved in Asymmetric Division of C. elegans". Mathematics 11, n.º 9 (25 de abril de 2023): 2039. http://dx.doi.org/10.3390/math11092039.
Texto completo da fonteHached, Mustapha, Khalide Jbilou, Christos Koukouvinos e Marilena Mitrouli. "A Multidimensional Principal Component Analysis via the C-Product Golub–Kahan–SVD for Classification and Face Recognition". Mathematics 9, n.º 11 (29 de maio de 2021): 1249. http://dx.doi.org/10.3390/math9111249.
Texto completo da fonteLee, Kwanyong, e Hyeyoung Park. "Probabilistic learning of similarity measures for tensor PCA". Pattern Recognition Letters 33, n.º 10 (julho de 2012): 1364–72. http://dx.doi.org/10.1016/j.patrec.2012.03.019.
Texto completo da fonteReddy, G. Vijendar, B. Siva Manga Raju, K. Varshith, S. Sahil e L. Harsha Vardhan. "Alzheimer’s Disease Recognition Applying Non-Negative Matrix Factorization Characteristics from Brain Magnetic Resonance Images (MRI)". E3S Web of Conferences 391 (2023): 01047. http://dx.doi.org/10.1051/e3sconf/202339101047.
Texto completo da fonteYang, Ben Juan, e Ben Yong Liu. "Improvement and Kernelization of T-2DPCA with Application to Face Recognition". Applied Mechanics and Materials 713-715 (janeiro de 2015): 2177–80. http://dx.doi.org/10.4028/www.scientific.net/amm.713-715.2177.
Texto completo da fonteShenhar, Chen, Hadassa Degani, Yaara Ber, Jack Baniel, Shlomit Tamir, Ofer Benjaminov, Philip Rosen, Edna Furman-Haran e David Margel. "Diffusion Is Directional: Innovative Diffusion Tensor Imaging to Improve Prostate Cancer Detection". Diagnostics 11, n.º 3 (20 de março de 2021): 563. http://dx.doi.org/10.3390/diagnostics11030563.
Texto completo da fonteByeon, Yeong-Hyeon, Jae-Neung Lee, Sung-Bum Pan e Keun-Chang Kwak. "Multilinear EigenECGs and FisherECGs for Individual Identification from Information Obtained by an Electrocardiogram Sensor". Symmetry 10, n.º 10 (12 de outubro de 2018): 487. http://dx.doi.org/10.3390/sym10100487.
Texto completo da fonteHuang, Jun, Kehua Su, Jamal El-Den, Tao Hu e Junlong Li. "An MPCA/LDA Based Dimensionality Reduction Algorithm for Face Recognition". Mathematical Problems in Engineering 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/393265.
Texto completo da fonteReddy, K. Shirisha, N. Arjun e Kowkuri Hrushikesh Mudiraj. "Regression and Classification of Alzheimer’s Disease Diagnosis Using NMF-TDNet Features From 3D Brain MR Image". International Journal on Recent and Innovation Trends in Computing and Communication 11, n.º 7s (13 de julho de 2023): 210–16. http://dx.doi.org/10.17762/ijritcc.v11i7s.6993.
Texto completo da fonteMudiraj, Kowkuri Hrushikesh, N. Arjun e K. Shirisha Reddy. "Hybrid Approach for Alzheimer’s Disease Diagnosis For 3D Brain MR Image". International Journal on Recent and Innovation Trends in Computing and Communication 11, n.º 5s (26 de maio de 2023): 330–35. http://dx.doi.org/10.17762/ijritcc.v11i5s.6755.
Texto completo da fonteMeng, Shushu, Long-Ting Huang e Wen-Qin Wang. "Tensor Decomposition and PCA Jointed Algorithm for Hyperspectral Image Denoising". IEEE Geoscience and Remote Sensing Letters 13, n.º 7 (julho de 2016): 897–901. http://dx.doi.org/10.1109/lgrs.2016.2552403.
Texto completo da fonteLiu, Chang, Tao Yan, WeiDong Zhao, YongHong Liu, Dan Li, Feng Lin e JiLiu Zhou. "Incremental Tensor Principal Component Analysis for Handwritten Digit Recognition". Mathematical Problems in Engineering 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/819758.
Texto completo da fonteWu, Hao, Ruihan Yue, Ruixue Gao, Rui Wen, Jun Feng e Youhua Wei. "Hyperspectral denoising based on the principal component low-rank tensor decomposition". Open Geosciences 14, n.º 1 (1 de janeiro de 2022): 518–29. http://dx.doi.org/10.1515/geo-2022-0379.
Texto completo da fonteYU, HONGCHUAN, JIAN J. ZHANG e XIAOSONG YANG. "TENSOR-BASED FEATURE REPRESENTATION WITH APPLICATION TO MULTIMODAL FACE RECOGNITION". International Journal of Pattern Recognition and Artificial Intelligence 25, n.º 08 (dezembro de 2011): 1197–217. http://dx.doi.org/10.1142/s0218001411009081.
Texto completo da fonteSun, Tianyu, Lang He, Xi Fang e Liang Xie. "Enhanced Multilinear PCA for Efficient Image Analysis and Dimensionality Reduction: Unlocking the Potential of Complex Image Data". Mathematics 13, n.º 3 (5 de fevereiro de 2025): 531. https://doi.org/10.3390/math13030531.
Texto completo da fonteMiyoshi, Tasuku, Yasuhisa Kamada e Yoshiyuki Kobayashi. "Differences in Simulated EMG Activities between a Non-Rotational Shot and an Ordinary Instep Kick Identified by Principal Component Analysis". Proceedings 49, n.º 1 (15 de junho de 2020): 154. http://dx.doi.org/10.3390/proceedings2020049154.
Texto completo da fonteLiu, Jingxiang, Dan Wang e Junghui Chen. "Monitoring Framework Based on Generalized Tensor PCA for Three-Dimensional Batch Process Data". Industrial & Engineering Chemistry Research 59, n.º 22 (29 de abril de 2020): 10493–508. http://dx.doi.org/10.1021/acs.iecr.9b06244.
Texto completo da fonteFilisbino, Tiene A., Gilson A. Giraldi e Carlos E. Thomaz. "Comparing Ranking Methods for Tensor Components in Multilinear and Concurrent Subspace Analysis with Applications in Face Images". International Journal of Image and Graphics 15, n.º 01 (janeiro de 2015): 1550006. http://dx.doi.org/10.1142/s0219467815500060.
Texto completo da fonteTaguchi, Y.-h., e Turki Turki. "Projection in genomic analysis: A theoretical basis to rationalize tensor decomposition and principal component analysis as feature selection tools". PLOS ONE 17, n.º 9 (29 de setembro de 2022): e0275472. http://dx.doi.org/10.1371/journal.pone.0275472.
Texto completo da fonteTaguchi, Y.-h., e Turki Turki. "Tensor-Decomposition-Based Unsupervised Feature Extraction Applied to Prostate Cancer Multiomics Data". Genes 11, n.º 12 (11 de dezembro de 2020): 1493. http://dx.doi.org/10.3390/genes11121493.
Texto completo da fonteYan, Ronghua, Jinye Peng e Dongmei Ma. "Dimensionality Reduction Based on PARAFAC Model". Journal of Imaging Science and Technology 63, n.º 6 (1 de novembro de 2019): 60501–1. http://dx.doi.org/10.2352/j.imagingsci.technol.2019.63.6.060501.
Texto completo da fonteMunia, Tamanna T. K., e Selin Aviyente. "Multivariate Analysis of Bivariate Phase-Amplitude Coupling in EEG Data Using Tensor Robust PCA". IEEE Transactions on Neural Systems and Rehabilitation Engineering 29 (2021): 1268–79. http://dx.doi.org/10.1109/tnsre.2021.3092890.
Texto completo da fonteSkantze, Viktor, Mikael Wallman, Ann-Sofie Sandberg, Rikard Landberg, Mats Jirstrand e Carl Brunius. "Identifying Metabotypes From Complex Biological Data Using PARAFAC". Current Developments in Nutrition 5, Supplement_2 (junho de 2021): 882. http://dx.doi.org/10.1093/cdn/nzab048_017.
Texto completo da fonteSalmanpour, Mohammad R., Seyed Masoud Rezaeijo, Mahdi Hosseinzadeh e Arman Rahmim. "Deep versus Handcrafted Tensor Radiomics Features: Prediction of Survival in Head and Neck Cancer Using Machine Learning and Fusion Techniques". Diagnostics 13, n.º 10 (11 de maio de 2023): 1696. http://dx.doi.org/10.3390/diagnostics13101696.
Texto completo da fonteGorgannejad, S., M. Reisi Gahrooei, K. Paynabar e R. W. Neu. "Quantitative prediction of the aged state of Ni-base superalloys using PCA and tensor regression". Acta Materialia 165 (fevereiro de 2019): 259–69. http://dx.doi.org/10.1016/j.actamat.2018.11.047.
Texto completo da fonteVerma, Gaurav, Siddhisanket Raskar, Murali Emani e Barbara Chapman. "Cross-Feature Transfer Learning for Efficient Tensor Program Generation". Applied Sciences 14, n.º 2 (6 de janeiro de 2024): 513. http://dx.doi.org/10.3390/app14020513.
Texto completo da fonteKleshchenko, E. I., M. P. Yakovenko, D. A. Kayumova, M. G. Kulagina, E. V. Borovikova, E. P. Apalkova e A. F. Komarov. "Сharacteristics of nervous system damage in children born with a very low and extremely low birthweight and perinatal hypoxic brain injury". Kuban Scientific Medical Bulletin 27, n.º 2 (12 de abril de 2020): 70–80. http://dx.doi.org/10.25207/1608-6228-2020-27-2-70-80.
Texto completo da fonteKerkour-El Miad, Aissa, e A. Kerour-El Miad. "Application of Principal Component Analysis (PCA) for the Choice of Parameters of a Micromechanical Model". Key Engineering Materials 820 (setembro de 2019): 75–84. http://dx.doi.org/10.4028/www.scientific.net/kem.820.75.
Texto completo da fonteZhang, Fan, Xiaoping Wang e Ke Sun. "A Report on Multilinear PCA Plus GTDA to Deal With Face Image". Cybernetics and Information Technologies 16, n.º 1 (1 de março de 2016): 146–57. http://dx.doi.org/10.1515/cait-2016-0012.
Texto completo da fonteCaporale, Alessandra Stella, Marco Nezzo, Maria Giovanna Di Trani, Alessandra Maiuro, Roberto Miano, Pierluigi Bove, Alessandro Mauriello, Guglielmo Manenti e Silvia Capuani. "Acquisition Parameters Influence Diffusion Metrics Effectiveness in Probing Prostate Tumor and Age-Related Microstructure". Journal of Personalized Medicine 13, n.º 5 (20 de maio de 2023): 860. http://dx.doi.org/10.3390/jpm13050860.
Texto completo da fonteTurki, Turki, Sanjiban Sekhar Roy e Y. H. Taguchi. "Optimized Tensor Decomposition and Principal Component Analysis Outperforming State-of-the-Art Methods When Analyzing Histone Modification Chromatin Immunoprecipitation Profiles". Algorithms 16, n.º 9 (23 de agosto de 2023): 401. http://dx.doi.org/10.3390/a16090401.
Texto completo da fonteAgajo, James, Emeshili O. Joseph, Emmanuel Eronu e Evans Ashigwuike. "An Algorithm for Spectrum Hole Detection using Convex Optimization And Tensor Analysis In Cognitive Radio Network". Journal of Biomedical Engineering and Medical Imaging 6, n.º 6 (31 de dezembro de 2019): 01–24. http://dx.doi.org/10.14738/jbemi.66.8010.
Texto completo da fonteBiroli, Giulio, Chiara Cammarota e Federico Ricci-Tersenghi. "How to iron out rough landscapes and get optimal performances: averaged gradient descent and its application to tensor PCA". Journal of Physics A: Mathematical and Theoretical 53, n.º 17 (8 de abril de 2020): 174003. http://dx.doi.org/10.1088/1751-8121/ab7b1f.
Texto completo da fonteRhee, Hannah S., e Joseph F. Y. Hoh. "Immunohistochemical Analysis of Myosin Heavy Chain Expression in Laryngeal Muscles of the Rabbit, Cat, and Baboon". Journal of Histochemistry & Cytochemistry 56, n.º 10 (23 de junho de 2008): 929–50. http://dx.doi.org/10.1369/jhc.2008.951756.
Texto completo da fonteLU, Zheng-Liang, e U. Hou LOK. "Dimension-Reduced Modeling for Local Volatility Surface via Unsupervised Learning". Romanian Journal of Information Science and Technology 27, n.º 3-4 (30 de setembro de 2024): 255–66. http://dx.doi.org/10.59277/romjist.2024.3-4.01.
Texto completo da fonteLiang, Peidong, Chentao Zhang, Habte Tadesse Likassa e Jielong Guo. "New Robust Tensor PCA via Affine Transformations and L 2,1 Norms for Exact Tubal Low-Rank Recovery from Highly Corrupted and Correlated Images in Signal Processing". Mathematical Problems in Engineering 2022 (31 de março de 2022): 1–14. http://dx.doi.org/10.1155/2022/3002348.
Texto completo da fonteUhliar, Matej. "Atomic partial charge model in chemistry: chemical accuracy of theoretical approaches for diatomic molecules". Acta Chimica Slovaca 17, n.º 1 (1 de janeiro de 2024): 1–11. http://dx.doi.org/10.2478/acs-2024-0001.
Texto completo da fonteQing, Yuhao, e Wenyi Liu. "Hyperspectral Image Classification Based on Multi-Scale Residual Network with Attention Mechanism". Remote Sensing 13, n.º 3 (20 de janeiro de 2021): 335. http://dx.doi.org/10.3390/rs13030335.
Texto completo da fonteChen, Hanxin, Shaoyi Li e Menglong Li. "Multi-Channel High-Dimensional Data Analysis with PARAFAC-GA-BP for Nonstationary Mechanical Fault Diagnosis". International Journal of Turbomachinery, Propulsion and Power 7, n.º 3 (28 de junho de 2022): 19. http://dx.doi.org/10.3390/ijtpp7030019.
Texto completo da fonteÞórðarson, Andri Freyr, Andreas Baum, Mónica García, Sergio M. Vicente-Serrano e Anders Stockmarr. "Gap-Filling of NDVI Satellite Data Using Tucker Decomposition: Exploiting Spatio-Temporal Patterns". Remote Sensing 13, n.º 19 (6 de outubro de 2021): 4007. http://dx.doi.org/10.3390/rs13194007.
Texto completo da fonteLien, Chung-Yueh, Tseng-Tse Chen, En-Tung Tsai, Yu-Jer Hsiao, Ni Lee, Chong-En Gao, Yi-Ping Yang et al. "Recognizing the Differentiation Degree of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cells Using Machine Learning and Deep Learning-Based Approaches". Cells 12, n.º 2 (4 de janeiro de 2023): 211. http://dx.doi.org/10.3390/cells12020211.
Texto completo da fonte