Artigos de revistas sobre o tema "Tensile tests. nanoindentation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Tensile tests. nanoindentation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Abdullah, Izhan, Muhammad Nubli Zulkifli, Azman Jalar e R. Ismail. "Deformation behavior relationship between tensile and nanoindentation tests of SAC305 lead-free solder wire". Soldering & Surface Mount Technology 30, n.º 3 (4 de junho de 2018): 194–202. http://dx.doi.org/10.1108/ssmt-07-2017-0020.
Texto completo da fonteNěmeček, Jiří, e Jiří Němeček. "Microscale Tests of Cement Paste Performed with FIB and Nanoindentation". Key Engineering Materials 760 (janeiro de 2018): 239–44. http://dx.doi.org/10.4028/www.scientific.net/kem.760.239.
Texto completo da fonteBencomo-Cisneros, J. A., A. Tejeda-Ochoa, J. A. García-Estrada, C. A. Herrera-Ramírez, A. Hurtado-Macías, R. Martínez-Sánchez e J. M. Herrera-Ramírez. "Characterization of Kevlar-29 fibers by tensile tests and nanoindentation". Journal of Alloys and Compounds 536 (setembro de 2012): S456—S459. http://dx.doi.org/10.1016/j.jallcom.2011.11.031.
Texto completo da fonteNěmeček, Jiří. "Nanoindentation Applied to Materials with an Inner Structure". Key Engineering Materials 586 (setembro de 2013): 55–58. http://dx.doi.org/10.4028/www.scientific.net/kem.586.55.
Texto completo da fonteLong, Xu, Xiaodi Zhang, Wenbin Tang, Shaobin Wang, Yihui Feng e Chao Chang. "Calibration of a Constitutive Model from Tension and Nanoindentation for Lead-Free Solder". Micromachines 9, n.º 11 (20 de novembro de 2018): 608. http://dx.doi.org/10.3390/mi9110608.
Texto completo da fonteLi, Cong, Hongwei Zhao, Linlin Sun e Xiujuan Yu. "In situ nanoindentation method for characterizing tensile properties of AISI 1045 steel based on mesomechanical analysis". Advances in Mechanical Engineering 11, n.º 7 (julho de 2019): 168781401986291. http://dx.doi.org/10.1177/1687814019862919.
Texto completo da fonteLofaj, Frantisek, e Dušan Németh. "FEM of Cracking during Nanoindentation and Scratch Testing in the Hard W-C Coating/Steel Substrate System". Key Engineering Materials 784 (outubro de 2018): 127–34. http://dx.doi.org/10.4028/www.scientific.net/kem.784.127.
Texto completo da fonteNěmeček, Jiří, Jan Maňák, Tomáš Krejčí e Jiří Němeček. "Small scale tests of cement with focused ion beam and nanoindentation". MATEC Web of Conferences 310 (2020): 00053. http://dx.doi.org/10.1051/matecconf/202031000053.
Texto completo da fonteVeleva, Lyubomira, Peter Hähner, Andrii Dubinko, Tymofii Khvan, Dmitry Terentyev e Ana Ruiz-Moreno. "Depth-Sensing Hardness Measurements to Probe Hardening Behaviour and Dynamic Strain Ageing Effects of Iron during Tensile Pre-Deformation". Nanomaterials 11, n.º 1 (30 de dezembro de 2020): 71. http://dx.doi.org/10.3390/nano11010071.
Texto completo da fonteLofaj, František, Dušan Németh, Rudolf Podoba e Michal Novák. "Cracking in Brittle Coatings during Nanoindentation". Key Engineering Materials 662 (setembro de 2015): 103–6. http://dx.doi.org/10.4028/www.scientific.net/kem.662.103.
Texto completo da fonteMüller, Wolfgang H., Holger Worrack e Jens Sterthaus. "Experimental Setup for the Determination of Mechanical Solder Materials Properties at Elevated Temperatures". Materials Science Forum 638-642 (janeiro de 2010): 3793–98. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.3793.
Texto completo da fonteRodríguez Pozo, Francisco Ramón, Daiana Ianev, Tomás Martínez Rodríguez, José L. Arias, Fátima Linares, Carlos Miguel Gutiérrez Ariza, Caterina Valentino et al. "Development of Halloysite Nanohybrids-Based Films: Enhancing Mechanical and Hydrophilic Properties for Wound Healing". Pharmaceutics 16, n.º 10 (27 de setembro de 2024): 1258. http://dx.doi.org/10.3390/pharmaceutics16101258.
Texto completo da fonteSrivastava, Ashish Kumar, Nagendra Kumar Maurya, Manish Maurya, Shashi Prakash Dwivedi e Ambuj Saxena. "Effect of Multiple Passes on Microstructural and Mechanical Properties of Surface Composite Al 2024/SiC Produced by Friction Stir Processing". Annales de Chimie - Science des Matériaux 44, n.º 6 (30 de dezembro de 2020): 421–26. http://dx.doi.org/10.18280/acsm.440608.
Texto completo da fonteNěmeček, Jiří, Jiří Němeček e Jan Maňák. "Fracture Properties of Cement Studied by Nanoindentation and FIB". Key Engineering Materials 784 (outubro de 2018): 3–8. http://dx.doi.org/10.4028/www.scientific.net/kem.784.3.
Texto completo da fonteNěmeček, J., V. Králík, V. Šmilauer, L. Polívka e A. Jäger. "Tensile strength of hydrated cement paste phases assessed by micro-bending tests and nanoindentation". Cement and Concrete Composites 73 (outubro de 2016): 164–73. http://dx.doi.org/10.1016/j.cemconcomp.2016.07.010.
Texto completo da fonteLiović, David, Marina Franulović, Nenad Gubeljak, Ervin Kamenar, Dražan Kozak e Emanuele Vaglio. "Tensile and nanoindentation tests analysis of Ti6Al4V alloy manufactured by laser powder bed fusion". Procedia Structural Integrity 53 (2024): 37–43. http://dx.doi.org/10.1016/j.prostr.2024.01.005.
Texto completo da fonteYan, Shuogeng, Kun Wang e Zhengzhi Wang. "A Comparative Study on the Microscale and Macroscale Mechanical Properties of Dental Resin Composites". Polymers 15, n.º 5 (23 de fevereiro de 2023): 1129. http://dx.doi.org/10.3390/polym15051129.
Texto completo da fonteLiao, Jin Zhi, Jian Jun Pang e Ming Jen Tan. "Nanoindentation of Multi-Wall CNT Reinforced Al Composites". Key Engineering Materials 447-448 (setembro de 2010): 549–53. http://dx.doi.org/10.4028/www.scientific.net/kem.447-448.549.
Texto completo da fonteWaltz, Laurent, Delphine Retraint, Arjen Roos, Patrick Olier e Jian Lu. "High Strength Nanocrystallized Multilayered Structure Obtained by SMAT and Co-Rolling". Materials Science Forum 614 (março de 2009): 249–54. http://dx.doi.org/10.4028/www.scientific.net/msf.614.249.
Texto completo da fonteLaurent-Brocq, M., L. Perrière, R. Pirès, G. Bracq, T. Rieger, Y. Danard e I. Guillot. "Combining tensile tests and nanoindentation to explore the strengthening of high and medium entropy alloys". Materialia 7 (setembro de 2019): 100404. http://dx.doi.org/10.1016/j.mtla.2019.100404.
Texto completo da fonteGu, Yu Li, Chun Hu Tao, Nan Li, Zhen Wei Wei e Pu Liu. "Effect of Two Heat Treatment Processes on Microstructures and Tensile Behaviors of Ni-Based Superalloy K465". Materials Science Forum 789 (abril de 2014): 647–52. http://dx.doi.org/10.4028/www.scientific.net/msf.789.647.
Texto completo da fonteMayo, Unai, Nerea Isasti, José M. Rodríguez-Ibabe e Pello Uranga. "Analysis of Strain Partitioning in Intercritically Deformed Microstructures via Interrupted Tensile Tests". Metals 11, n.º 1 (8 de janeiro de 2021): 112. http://dx.doi.org/10.3390/met11010112.
Texto completo da fonteMayo, Unai, Nerea Isasti, José M. Rodríguez-Ibabe e Pello Uranga. "Analysis of Strain Partitioning in Intercritically Deformed Microstructures via Interrupted Tensile Tests". Metals 11, n.º 1 (8 de janeiro de 2021): 112. http://dx.doi.org/10.3390/met11010112.
Texto completo da fonteIshimoto, Takuya, e Takayoshi Nakano. "Evaluation of Mechanical Properties of Regenerated Bone by Nanoindentation Technique". Materials Science Forum 654-656 (junho de 2010): 2220–24. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.2220.
Texto completo da fonteWang, Wei, Xiang Fang, Xuanguo Wang, Michel Andrieux e Vincent Ji. "Mechanism of Blunt Punching Tools’ Influence on Deformation and Residual Stress Distribution". Metals 11, n.º 12 (14 de dezembro de 2021): 2029. http://dx.doi.org/10.3390/met11122029.
Texto completo da fonteHu, Wei Ping, Si Yuan Zhang, Xiao Yu He, Zhen Yang Liu, Rolf Berghammer e Günter Gottstein. "Investigations on Microstructure Evolution and Deformation Behavior of Aged and Ultrafine Grained Al-Zn-Mg Alloy Subjected to Severe Plastic Deformation". Materials Science Forum 667-669 (dezembro de 2010): 253–58. http://dx.doi.org/10.4028/www.scientific.net/msf.667-669.253.
Texto completo da fonteHwang, Tae Kyung, e Soon Bok Lee. "Effects of Microstructure on Material Behaviors of Solder Alloys". Key Engineering Materials 297-300 (novembro de 2005): 825–30. http://dx.doi.org/10.4028/www.scientific.net/kem.297-300.825.
Texto completo da fonteMüller, W. H., H. Worrack, J. Sterthaus, J. Villain, J. Wilden e A. Juritza. "How to extract continuum materials properties for (lead-free) solders from tensile tests and nanoindentation experiments". Microsystem Technologies 15, n.º 1 (22 de agosto de 2008): 45–55. http://dx.doi.org/10.1007/s00542-008-0688-y.
Texto completo da fonteClauß, Sebastian, Joseph Gabriel, Alexander Karbach, Mathias Matner e Peter Niemz. "Influence of the adhesive formulation on the mechanical properties and bonding performance of polyurethane prepolymers". Holzforschung 65, n.º 6 (1 de outubro de 2011): 835–44. http://dx.doi.org/10.1515/hf.2011.095.
Texto completo da fonteGajowiec, Grzegorz, Michał Bartmański, Beata Majkowska-Marzec, Andrzej Zieliński, Bartosz Chmiela e Marek Derezulko. "Hydrogen Embrittlement and Oxide Layer Effect in the Cathodically Charged Zircaloy-2". Materials 13, n.º 8 (18 de abril de 2020): 1913. http://dx.doi.org/10.3390/ma13081913.
Texto completo da fonteWu, N. Q., Cedrix Xia, Ming Li, N. Perrusquia e Scott X. Mao. "Interfacial Structure and Micro and Nano-Mechanical Behavior of Laser-Welded 6061 Aluminum Alloy Blank". Journal of Engineering Materials and Technology 126, n.º 1 (1 de janeiro de 2004): 8–13. http://dx.doi.org/10.1115/1.1631023.
Texto completo da fonteJacob, Anaïs, e Ali Mehmanparast. "Sensitivity Analysis of Material Microstructure Effects on Predicted Crack Paths Using Finite Element Simulations". Journal of Multiscale Modelling 07, n.º 02 (junho de 2016): 1650003. http://dx.doi.org/10.1142/s1756973716500037.
Texto completo da fonteRauter, Natalie. "A computational modeling approach based on random fields for short fiber-reinforced composites with experimental verification by nanoindentation and tensile tests". Computational Mechanics 67, n.º 2 (18 de janeiro de 2021): 699–722. http://dx.doi.org/10.1007/s00466-020-01958-3.
Texto completo da fonteDutta, A. K., D. Penumadu e B. Files. "Nanoindentation testing for evaluating modulus and hardness of single-walled carbon nanotube–reinforced epoxy composites". Journal of Materials Research 19, n.º 1 (janeiro de 2004): 158–64. http://dx.doi.org/10.1557/jmr.2004.19.1.158.
Texto completo da fonteHer, Shiuh-Chuan, e Wei-Chun Hsu. "Strain and Temperature Sensitivities Along with Mechanical Properties of CNT Buckypaper Sensors". Sensors 20, n.º 11 (28 de maio de 2020): 3067. http://dx.doi.org/10.3390/s20113067.
Texto completo da fonteMansour, Djamel Eddine, Christoph Herzog, Petra Christöfl, Luciana Pitta Bauermann, Gernot Oreski, Andreas Schuler, Daniel Philipp e Paul Gebhardt. "Nanoindentation Reveals Crosslinking Behavior of Solar Encapsulants—The Methodological Advantages over Bulk Methods". Polymers 13, n.º 19 (29 de setembro de 2021): 3328. http://dx.doi.org/10.3390/polym13193328.
Texto completo da fonteGolan, Ofek, Hila Shalom, Ifat Kaplan-Ashiri, Sidney R. Cohen, Yishay Feldman, Iddo Pinkas, Rakefet Ofek Almog, Alla Zak e Reshef Tenne. "Poly(L-lactic acid) Reinforced with Hydroxyapatite and Tungsten Disulfide Nanotubes". Polymers 13, n.º 21 (8 de novembro de 2021): 3851. http://dx.doi.org/10.3390/polym13213851.
Texto completo da fonteSamélor, D., Maelenn Aufray, Loic Lacroix, Yannick Balcaen, Joël Alexis, H. Vergnes, Dominique Poquillon et al. "Mechanical and Surface Properties of Chemical Vapor Deposited Protective Aluminium Oxide Films on TA6V Alloy". Advances in Science and Technology 66 (outubro de 2010): 66–73. http://dx.doi.org/10.4028/www.scientific.net/ast.66.66.
Texto completo da fonteHer, Shiuh-Chuan, e Wei-Chun Hsu. "Sensing Performance and Mechanical Properties of Buckypaper Impregnated with Epoxy Resin". Nanomaterials 10, n.º 11 (14 de novembro de 2020): 2258. http://dx.doi.org/10.3390/nano10112258.
Texto completo da fonteŞevik, Hüseyin, Selma Özarslan e Hajo Dieringa. "Assessment of the Mechanical and Corrosion Properties of Mg-1Zn-0.6Ca/Diamond Nanocomposites for Biomedical Applications". Nanomaterials 12, n.º 24 (9 de dezembro de 2022): 4399. http://dx.doi.org/10.3390/nano12244399.
Texto completo da fonteLi, Youzhi, Yongfeng Shen, Sixin Zhao, Weina Zhang e Wenying Xue. "Strengthening a Medium-Carbon Low-Alloy Steel by Nanosized Grains: The Role of Asymmetrical Rolling". Nanomaterials 13, n.º 5 (6 de março de 2023): 956. http://dx.doi.org/10.3390/nano13050956.
Texto completo da fonteSomov, Pavel A., Eugene S. Statnik, Yuliya V. Malakhova, Kirill V. Nyaza, Alexey I. Salimon, Dmitry K. Ryabov e Alexander M. Korsunsky. "On the Grain Microstructure–Mechanical Properties Relationships in Aluminium Alloy Parts Fabricated by Laser Powder Bed Fusion". Metals 11, n.º 8 (24 de julho de 2021): 1175. http://dx.doi.org/10.3390/met11081175.
Texto completo da fonteHull, Katherine L., Younane N. Abousleiman, Yanhui Han, Ghaithan A. Al-Muntasheri, Peter Hosemann, S. Scott Parker e Cameron B. Howard. "Nanomechanical Characterization of the Tensile Modulus of Rupture for Kerogen-Rich Shale". SPE Journal 22, n.º 04 (13 de fevereiro de 2017): 1024–33. http://dx.doi.org/10.2118/177628-pa.
Texto completo da fonteChahrour, Mutaz K., Md Akter Hosen, Yingxin Goh, Teong Yen Tong, Soon Poh Yap e Mohamed Amine Khadimallah. "Failure Mechanisms of Structural Bamboo Using Microstructural Analyses". Advances in Materials Science and Engineering 2021 (20 de dezembro de 2021): 1–10. http://dx.doi.org/10.1155/2021/1571905.
Texto completo da fonteZou, Y., L. F. Ge, Z. Y. Li, J. W. Guo, W. Zhu e Z. S. Ma. "Determination of the intrinsic elastic modulus, hardness and fracture strength of thermally growth oxide by nanoindentation and tensile tests". Engineering Failure Analysis 131 (janeiro de 2022): 105815. http://dx.doi.org/10.1016/j.engfailanal.2021.105815.
Texto completo da fonteMishra, Pragya, Pia Åkerfeldt, Farnoosh Forouzan, Fredrik Svahn, Yuan Zhong, Zhijian Shen e Marta-Lena Antti. "Microstructural Characterization and Mechanical Properties of L-PBF Processed 316 L at Cryogenic Temperature". Materials 14, n.º 19 (6 de outubro de 2021): 5856. http://dx.doi.org/10.3390/ma14195856.
Texto completo da fonteJiang, Chun Yu, Xiao Xiao Tian e Guo Dong Shi. "Microstructure and Mechanical Properties of Tough Phase Layers of a NiCoCrAl/YSZ Multiscalar Microlaminate". Advanced Materials Research 1089 (janeiro de 2015): 15–19. http://dx.doi.org/10.4028/www.scientific.net/amr.1089.15.
Texto completo da fonteCarneiro, Íris, e Sónia Simões. "Investigation of Mechanical Properties of Al/CNT Nanocomposites Produced by Powder Metallurgy". Applied Sciences 13, n.º 1 (21 de dezembro de 2022): 54. http://dx.doi.org/10.3390/app13010054.
Texto completo da fonteYan, Xiang, Yiming Wu, Minghe Zhang, Songsong Liu, Lihui Sun e Yunli Feng. "Microstructure Evolution and Mechanical Properties of Ferrite–Austenite Duplex Fe-Mn-Al-(Cu)-C Steel under Different Annealing Temperatures". Materials 15, n.º 22 (21 de novembro de 2022): 8271. http://dx.doi.org/10.3390/ma15228271.
Texto completo da fonteIsaza M, Cesar A., JE Ledezma Sillas, JM Meza e JM Herrera Ramírez. "Mechanical properties and interfacial phenomena in aluminum reinforced with carbon nanotubes manufactured by the sandwich technique". Journal of Composite Materials 51, n.º 11 (13 de julho de 2016): 1619–29. http://dx.doi.org/10.1177/0021998316658784.
Texto completo da fonte