Literatura científica selecionada sobre o tema "Tensile tests. nanoindentation"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Tensile tests. nanoindentation".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Tensile tests. nanoindentation"
Abdullah, Izhan, Muhammad Nubli Zulkifli, Azman Jalar e R. Ismail. "Deformation behavior relationship between tensile and nanoindentation tests of SAC305 lead-free solder wire". Soldering & Surface Mount Technology 30, n.º 3 (4 de junho de 2018): 194–202. http://dx.doi.org/10.1108/ssmt-07-2017-0020.
Texto completo da fonteNěmeček, Jiří, e Jiří Němeček. "Microscale Tests of Cement Paste Performed with FIB and Nanoindentation". Key Engineering Materials 760 (janeiro de 2018): 239–44. http://dx.doi.org/10.4028/www.scientific.net/kem.760.239.
Texto completo da fonteBencomo-Cisneros, J. A., A. Tejeda-Ochoa, J. A. García-Estrada, C. A. Herrera-Ramírez, A. Hurtado-Macías, R. Martínez-Sánchez e J. M. Herrera-Ramírez. "Characterization of Kevlar-29 fibers by tensile tests and nanoindentation". Journal of Alloys and Compounds 536 (setembro de 2012): S456—S459. http://dx.doi.org/10.1016/j.jallcom.2011.11.031.
Texto completo da fonteNěmeček, Jiří. "Nanoindentation Applied to Materials with an Inner Structure". Key Engineering Materials 586 (setembro de 2013): 55–58. http://dx.doi.org/10.4028/www.scientific.net/kem.586.55.
Texto completo da fonteLong, Xu, Xiaodi Zhang, Wenbin Tang, Shaobin Wang, Yihui Feng e Chao Chang. "Calibration of a Constitutive Model from Tension and Nanoindentation for Lead-Free Solder". Micromachines 9, n.º 11 (20 de novembro de 2018): 608. http://dx.doi.org/10.3390/mi9110608.
Texto completo da fonteLi, Cong, Hongwei Zhao, Linlin Sun e Xiujuan Yu. "In situ nanoindentation method for characterizing tensile properties of AISI 1045 steel based on mesomechanical analysis". Advances in Mechanical Engineering 11, n.º 7 (julho de 2019): 168781401986291. http://dx.doi.org/10.1177/1687814019862919.
Texto completo da fonteLofaj, Frantisek, e Dušan Németh. "FEM of Cracking during Nanoindentation and Scratch Testing in the Hard W-C Coating/Steel Substrate System". Key Engineering Materials 784 (outubro de 2018): 127–34. http://dx.doi.org/10.4028/www.scientific.net/kem.784.127.
Texto completo da fonteNěmeček, Jiří, Jan Maňák, Tomáš Krejčí e Jiří Němeček. "Small scale tests of cement with focused ion beam and nanoindentation". MATEC Web of Conferences 310 (2020): 00053. http://dx.doi.org/10.1051/matecconf/202031000053.
Texto completo da fonteVeleva, Lyubomira, Peter Hähner, Andrii Dubinko, Tymofii Khvan, Dmitry Terentyev e Ana Ruiz-Moreno. "Depth-Sensing Hardness Measurements to Probe Hardening Behaviour and Dynamic Strain Ageing Effects of Iron during Tensile Pre-Deformation". Nanomaterials 11, n.º 1 (30 de dezembro de 2020): 71. http://dx.doi.org/10.3390/nano11010071.
Texto completo da fonteLofaj, František, Dušan Németh, Rudolf Podoba e Michal Novák. "Cracking in Brittle Coatings during Nanoindentation". Key Engineering Materials 662 (setembro de 2015): 103–6. http://dx.doi.org/10.4028/www.scientific.net/kem.662.103.
Texto completo da fonteTeses / dissertações sobre o assunto "Tensile tests. nanoindentation"
Gasmi, Assia. "Effet de la nanostructuration sur le comportement thermomécanique du Nitinol". Electronic Thesis or Diss., Université de Montpellier (2022-....), 2024. http://www.theses.fr/2024UMONS018.
Texto completo da fonteThis thesis focuses on the shape memory alloy NiTi, with a specific emphasis on the influence of the surface nanostructuring process SMAT on its thermomechanical behavior. Through four distinct chapters, it revisits the main characteristics of shape memory alloys (SMAs), highlighting the exceptional properties of the NiTi alloy and exploring the surface nanocrystallization treatment (SMAT). Microstructural characterization is then deeply investigated, particularly by studying the effects of annealing heat treatment and SMAT on phase transition. The third chapter focuses on thermomechanical analysis methods suitable for NiTi, examining tensile tests and nanoindentation. Finally, the fourth chapter analyzes the thermomechanical characterization of the alloy before and after SMAT treatment, highlighting the implications of these transformations on its overall behavior.This thesis contributes to understanding the effects of the SMAT process on the NiTi alloy, revealing links between microstructure, present phases, and mechanical properties. The results offer promising perspectives for better control of the properties of the NiTi alloy.The results obtained for different SMAT treatments show that this process modifies the mechanical response of the material. It also has an influence on its initial state, as illustrated by differences in DSC curves. Kinematic (strain rate fields) and calorimetric (heat source field) measurements also indicate notable differences in responses depending on SMAT processing parameters. Exploration of behavior during load/unload cycles shows a response that stabilizes after a few cycles. Coupling effects seem to be predominant compared to dissipative effects. These observations should be extended to fatigue loading to better highlight any dissipative effects. Similarly, the use of more elaborate interpretation models would allow better consideration of structural effects and enrich the understanding of the relationship between the process and property evolutions
Abdel-Wahab, Adel A. "Experimental and numerical analysis of deformation and fracture of cortical bone tissue". Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/8790.
Texto completo da fonteWu, Chung Lin, e 吳忠霖. "Study of Bulge Test, Nano Tensile Tester, and Nanoindentation System for Mechanical Properties Measurement of Thin Films". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/35286258751227527601.
Texto completo da fonte國立清華大學
動力機械工程學系
97
The bulge test is a convenient approach to determine the thin film mechanical properties. This study presents a fabrication process to prepare the circular membrane made of metal as well as dielectric films for bulge test. The process successfully combines the dry etching of DRIE and XeF2 to release the test metal films. The Si3N4 film is used to protect the metal layers during the release process. By changing the recipe of XeF2 etching, the circular Si3N4 test membrane can also be fabricated. In applications, the circular membranes of Al, Au, and Si3N4 films were successfully prepared using the present approach. By using these specimens, the bulge test designed in this work was used to determine the thin film Young's modulus. The results by the bulge test show the similar trend with the results obtained by nanoindentation test. To find out the measurement ability of force and displacement of nano tensile tester and nanoindentation system, we adopted the method suggested in ISO GUN to calculate the uncertainty of this system. The standard weights are used to calibrate the force of the testing system. In addition, an optical method is adopted to evaluate the displacement uncertainty of the system. This research can be used as the basis for calculating measurement uncertainty in performing material tests. Moreover, this study is to investigate the static and dynamic mechanical properties of polydimethylsiloxane (PDMS) and the mixture of PDMS and carbon nanotubes. The PDMS/CNTs nanocomposites were stirred by an ultrasonic instrument to prevent agglomerations. A calibrated nano tensile tester was adopted in this testing system with maximum load of 500 mN and crosshead extension of 150 mm. The dynamic properties of PDMS/CNTs nanocomposites such as storage and loss modulus can be obtained by this system. The storage modulus increased with the CNTs content and also with the higher frequencies. Finally, the nanoindentation measurement system was employed to characterize the mechanical properties of PDMS and PDMS/CNTs. The increase of Young’s modulus by nanoindentation test has the similar trend with the results obtained by the tensile test method.
Trabalhos de conferências sobre o assunto "Tensile tests. nanoindentation"
Tillmann, W., U. Selvadurai e W. Luo. "Measurement of the Young’s Modulus of Thermal Spray Coatings by Means of Several Methods". In ITSC 2012, editado por R. S. Lima, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, A. McDonald e F. L. Toma. ASM International, 2012. http://dx.doi.org/10.31399/asm.cp.itsc2012p0580.
Texto completo da fonteOvaert, Timothy C., e B. R. Kim. "Estimation of Polymer Coating Scratch Tensile Strength by Nano-Indentation, Micro-Scratch Testing, and Finite Element Modeling". In World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-63700.
Texto completo da fonteTew, J. W. R., J. Wei, Y. F. Sun, F. Su e Y. C. Liu. "Thermomechanical and Creep Behaviours of Au/Sn Solder Alloy". In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13242.
Texto completo da fonteKwak, Dong-Hyeon, Jae Min Sim, Yoon-Suk Chang, Byeong Seo Kong e Changheui Jang. "Determination of Irradiated Stainless Steel Properties and Its Effects on Reactor Vessel Internals". In ASME 2022 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/pvp2022-84936.
Texto completo da fonteWarren, A. W., e Y. B. Guo. "An Experimental Study on Subsurface Mechanical Behavior, Residual Stress, and Microstructure Induced by Process Dynamics in Machining". In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60021.
Texto completo da fonteKaraivanov, Ventzislav G., William S. Slaughter, Sean Siw, Minking K. Chyu e Mary Anne Alvin. "Compressive Creep Testing of Thermal Barrier Coated Nickel-Based Superalloys". In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-23421.
Texto completo da fonteMaruf, Mahbub Alam, Golam Rakib Mazumder, Souvik Chakraborty, Jeffrey C. Suhling e Pradeep Lall. "Evolution in Lead-Free Solder Alloys Subjected to Both Mechanical Cycling and Aging". In ASME 2023 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/ipack2023-112023.
Texto completo da fonteBreedlove, Evan L., Mark T. Gibson, Aaron T. Hedegaard e Emilie L. Rexeisen. "Evaluation of Dynamic Mechanical Test Methods". In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65742.
Texto completo da fonteBũrkle, G., H. J. Fecht, A. Sagel e C. Wanke. "Dynamical Mechanical Analysis of the Mechanical Properties of Al- and Fe-Based Thermal Spray Coatings". In ITSC2001, editado por Christopher C. Berndt, Khiam A. Khor e Erich F. Lugscheider. ASM International, 2001. http://dx.doi.org/10.31399/asm.cp.itsc2001p0999.
Texto completo da fonteSchoeller, Harry, Shubhra Bansal, Aaron Knobloch, David Shaddock e Junghyun Cho. "Constitutive Relations of High Temperature Solders". In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42215.
Texto completo da fonteRelatórios de organizações sobre o assunto "Tensile tests. nanoindentation"
Weiss, Charles, William McGinley, Bradford Songer, Madeline Kuchinski e Frank Kuchinski. Performance of active porcelain enamel coated fibers for fiber-reinforced concrete : the performance of active porcelain enamel coatings for fiber-reinforced concrete and fiber tests at the University of Louisville. Engineer Research and Development Center (U.S.), maio de 2021. http://dx.doi.org/10.21079/11681/40683.
Texto completo da fonte