Artigos de revistas sobre o tema "Temperate and boreal trees"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Temperate and boreal trees".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Du, Enzai, e Yang Tang. "Distinct Climate Effects on Dahurian Larch Growth at an Asian Temperate-Boreal Forest Ecotone and Nearby Boreal Sites". Forests 13, n.º 1 (26 de dezembro de 2021): 27. http://dx.doi.org/10.3390/f13010027.
Texto completo da fonteFrelich, Lee E., Rebecca A. Montgomery e Peter B. Reich. "Seven Ways a Warming Climate Can Kill the Southern Boreal Forest". Forests 12, n.º 5 (29 de abril de 2021): 560. http://dx.doi.org/10.3390/f12050560.
Texto completo da fonteMcCarthy, J. "Gap dynamics of forest trees: A review with particular attention to boreal forests". Environmental Reviews 9, n.º 1 (1 de janeiro de 2001): 1–59. http://dx.doi.org/10.1139/a00-012.
Texto completo da fonteReich, Peter B., Kerrie M. Sendall, Artur Stefanski, Xiaorong Wei, Roy L. Rich e Rebecca A. Montgomery. "Boreal and temperate trees show strong acclimation of respiration to warming". Nature 531, n.º 7596 (março de 2016): 633–36. http://dx.doi.org/10.1038/nature17142.
Texto completo da fonteBugmann, Harald. "Functional types of trees in temperate and boreal forests: classification and testing". Journal of Vegetation Science 7, n.º 3 (junho de 1996): 359–70. http://dx.doi.org/10.2307/3236279.
Texto completo da fonteMachar, Ivo, Martin Schlossarek, Vilem Pechanec, Lubos Uradnicek, Ludek Praus e Ahmet Sıvacıoğlu. "Retention Forestry Supports Bird Diversity in Managed, Temperate Hardwood Floodplain Forests". Forests 10, n.º 4 (1 de abril de 2019): 300. http://dx.doi.org/10.3390/f10040300.
Texto completo da fonteBaas, Pieter, e Fritz H. Schweingruber. "Ecological Trends in the Wood Anatomy of Trees, Shrubs and Climbers from Europe". IAWA Journal 8, n.º 3 (1987): 245–74. http://dx.doi.org/10.1163/22941932-90001053.
Texto completo da fonteBurton, Julia I., Eric K. Zenner e Lee E. Frelich. "Frost Crack Incidence in Northern Hardwood Forests of the Southern Boreal–North Temperate Transition Zone". Northern Journal of Applied Forestry 25, n.º 3 (1 de setembro de 2008): 133–38. http://dx.doi.org/10.1093/njaf/25.3.133.
Texto completo da fonteGauci, Vincent, Sunitha Rao Pangala, Alexander Shenkin, Josep Barba, David Bastviken, Viviane Figueiredo, Carla Gomez et al. "Global atmospheric methane uptake by upland tree woody surfaces". Nature 631, n.º 8022 (24 de julho de 2024): 796–800. http://dx.doi.org/10.1038/s41586-024-07592-w.
Texto completo da fonteLoehle, C. "Predicting Pleistocene climate from vegetation". Climate of the Past Discussions 2, n.º 5 (23 de outubro de 2006): 979–1000. http://dx.doi.org/10.5194/cpd-2-979-2006.
Texto completo da fonteZohner, Constantin M., Lidong Mo, Thomas A. M. Pugh, Jean‐Francois Bastin e Thomas W. Crowther. "Interactive climate factors restrict future increases in spring productivity of temperate and boreal trees". Global Change Biology 26, n.º 7 (29 de abril de 2020): 4042–55. http://dx.doi.org/10.1111/gcb.15098.
Texto completo da fonteNilsson, Sven G., Mats Niklasson, Jonas Hedin, Gillis Aronsson, Jerzy M. Gutowski, Per Linder, Håkan Ljungberg, Grzegorz Mikusiński e Thomas Ranius. "Densities of large living and dead trees in old-growth temperate and boreal forests". Forest Ecology and Management 161, n.º 1-3 (maio de 2002): 189–204. http://dx.doi.org/10.1016/s0378-1127(01)00480-7.
Texto completo da fonteLinkosalo, T., R. Hakkinen e H. Hanninen. "Models of the spring phenology of boreal and temperate trees: is there something missing?" Tree Physiology 26, n.º 9 (1 de setembro de 2006): 1165–72. http://dx.doi.org/10.1093/treephys/26.9.1165.
Texto completo da fonteLoehle, C. "Predicting Pleistocene climate from vegetation in North America". Climate of the Past 3, n.º 1 (12 de fevereiro de 2007): 109–18. http://dx.doi.org/10.5194/cp-3-109-2007.
Texto completo da fonteWatanabe, Sadamoto, e Satohiko Sasaki. "The Silvicultural Management System in temperate and boreal forests: A case history of the Hokkaido Tokyo University Forest". Canadian Journal of Forest Research 24, n.º 6 (1 de junho de 1994): 1176–85. http://dx.doi.org/10.1139/x94-155.
Texto completo da fonteLin, Jianhong, Daniel Berveiller, Christophe François, Heikki Hänninen, Alexandre Morfin, Gaëlle Vincent, Rui Zhang, Cyrille Rathgeber e Nicolas Delpierre. "A model of the within-population variability of budburst in forest trees". Geoscientific Model Development 17, n.º 2 (31 de janeiro de 2024): 865–79. http://dx.doi.org/10.5194/gmd-17-865-2024.
Texto completo da fonteZohner, Constantin M., Lidong Mo, Susanne S. Renner, Jens-Christian Svenning, Yann Vitasse, Blas M. Benito, Alejandro Ordonez et al. "Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia". Proceedings of the National Academy of Sciences 117, n.º 22 (11 de maio de 2020): 12192–200. http://dx.doi.org/10.1073/pnas.1920816117.
Texto completo da fonteMorin, Xavier, e Isabelle Chuine. "Will tree species experience increased frost damage due to climate change because of changes in leaf phenology?" Canadian Journal of Forest Research 44, n.º 12 (dezembro de 2014): 1555–65. http://dx.doi.org/10.1139/cjfr-2014-0282.
Texto completo da fonteMartinez, Jean-Jacques Itzhak, Reut Raz e Nyembezi Mgocheki. "Differential spatial distribution of arthropods under epiphytic lichens on trees". Journal of Insect Biodiversity 2, n.º 15 (1 de agosto de 2014): 1. http://dx.doi.org/10.12976/jib/2014.2.15.
Texto completo da fonteFedrowitz, Katja, e Lena Gustafsson. "Does the amount of trees retained at clearfelling of temperate and boreal forests influence biodiversity response?" Environmental Evidence 1, n.º 1 (2012): 5. http://dx.doi.org/10.1186/2047-2382-1-5.
Texto completo da fonteNilsson, Sven G., Mats Niklasson, Jonas Hedin, Gillis Aronsson, Jerzy M. Gutowski, Per Linder, Håkan Ljungberg, Grzegorz Mikusiński e Thomas Ranius. "Erratum to “Densities of large living and dead trees in old-growth temperate and boreal forests”". Forest Ecology and Management 178, n.º 3 (junho de 2003): 355–70. http://dx.doi.org/10.1016/s0378-1127(03)00084-7.
Texto completo da fonteRiedel, Jon L., Alice Telka, Andy Bunn e John J. Clague. "Reconstruction of climate and ecology of Skagit Valley, Washington, from 27.7 to 19.8 ka based on plant and beetle macrofossils". Quaternary Research 106 (27 de outubro de 2021): 94–112. http://dx.doi.org/10.1017/qua.2021.50.
Texto completo da fonteFréchette, Bianca, e Anne de Vernal. "Evidence for large-amplitude biome and climate changes in Atlantic Canada during the last interglacial and mid-Wisconsinan periods". Quaternary Research 79, n.º 2 (março de 2013): 242–55. http://dx.doi.org/10.1016/j.yqres.2012.11.011.
Texto completo da fonteCamm, E. L., D. C. Goetze, S. N. Silim e D. P. Lavender. "Cold storage of conifer seedlings: An update from the British Columbia perspective". Forestry Chronicle 70, n.º 3 (1 de junho de 1994): 311–16. http://dx.doi.org/10.5558/tfc70311-3.
Texto completo da fonteBabst, Flurin, Olivier Bouriaud, Benjamin Poulter, Valerie Trouet, Martin P. Girardin e David C. Frank. "Twentieth century redistribution in climatic drivers of global tree growth". Science Advances 5, n.º 1 (janeiro de 2019): eaat4313. http://dx.doi.org/10.1126/sciadv.aat4313.
Texto completo da fonteRichard, Pierre JH, Serge Occhietti, Martine Clet e Alayn C. Larouche. "Paléophytogéographie de la formation de Scarborough : nouvelles données et implications". Canadian Journal of Earth Sciences 36, n.º 10 (1 de outubro de 1999): 1589–602. http://dx.doi.org/10.1139/e99-066.
Texto completo da fonteAikio, Sami, Kari Taulavuori, Sonja Hurskainen, Erja Taulavuori e Juha Tuomi. "Contributions of day length, temperature and individual variability on the rate and timing of leaf senescence in the common lilac Syringa vulgaris". Tree Physiology 39, n.º 6 (29 de abril de 2019): 961–70. http://dx.doi.org/10.1093/treephys/tpz013.
Texto completo da fonteGarighan, Julio, Etienne Dvorak, Joan Estevan, Karine Loridon, Bruno Huettel, Gautier Sarah, Isabelle Farrera et al. "The Identification of Small RNAs Differentially Expressed in Apple Buds Reveals a Potential Role of the Mir159-MYB Regulatory Module during Dormancy". Plants 10, n.º 12 (3 de dezembro de 2021): 2665. http://dx.doi.org/10.3390/plants10122665.
Texto completo da fonteQuinzin, Maud C., Signe Normand, Simon Dellicour, Jens-Christian Svenning e Patrick Mardulyn. "Glacial survival of trophically linked boreal species in northern Europe". Proceedings of the Royal Society B: Biological Sciences 284, n.º 1856 (7 de junho de 2017): 20162799. http://dx.doi.org/10.1098/rspb.2016.2799.
Texto completo da fonteStrong, Wayne L. "Divergent Growth and Changing Climate Relationships of Boreal and Subalpine Spruce in Southern Yukon, Canada". ARCTIC 74, n.º 4 (18 de janeiro de 2022): 456–68. http://dx.doi.org/10.14430/arctic74289.
Texto completo da fonteLeithead, Mark D., Madhur Anand e Lucas C. R. Silva. "Northward migrating trees establish in treefall gaps at the northern limit of the temperate–boreal ecotone, Ontario, Canada". Oecologia 164, n.º 4 (22 de setembro de 2010): 1095–106. http://dx.doi.org/10.1007/s00442-010-1769-z.
Texto completo da fonteMaurya, Jay P., Pal C. Miskolczi, Sanatkumar Mishra, Rajesh Kumar Singh e Rishikesh P. Bhalerao. "A genetic framework for regulation and seasonal adaptation of shoot architecture in hybrid aspen". Proceedings of the National Academy of Sciences 117, n.º 21 (11 de maio de 2020): 11523–30. http://dx.doi.org/10.1073/pnas.2004705117.
Texto completo da fonteHowe, Glenn T., Sally N. Aitken, David B. Neale, Kathleen D. Jermstad, Nicholas C. Wheeler e Tony HH Chen. "From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees". Canadian Journal of Botany 81, n.º 12 (1 de dezembro de 2003): 1247–66. http://dx.doi.org/10.1139/b03-141.
Texto completo da fonteMossop, Brent, e Michael J. Bradford. "Importance of large woody debris for juvenile chinook salmon habitat in small boreal forest streams in the upper Yukon River basin, Canada". Canadian Journal of Forest Research 34, n.º 9 (1 de setembro de 2004): 1955–66. http://dx.doi.org/10.1139/x04-066.
Texto completo da fonteCHEBAKOVA, N. M., E. V. BAZHINA, E. I. PARFENOVA e V. A. SENASHOVA. "IN SEARCH OF AN X FACTOR: A REVIEW OF PUBLICATIONS ON THE ISSUE OF DARK-NEEDLED FOREST DECLINE/DIEBACK IN NORTHERN EURASIA". Meteorologiya i Gidrologiya, n.º 5 (maio de 2022): 123–40. http://dx.doi.org/10.52002/0130-2906-2022-5-123-140.
Texto completo da fonteCarpenter, Joshua, Jinha Jung, Sungchan Oh, Brady Hardiman e Songlin Fei. "An Unsupervised Canopy-to-Root Pathing (UCRP) Tree Segmentation Algorithm for Automatic Forest Mapping". Remote Sensing 14, n.º 17 (30 de agosto de 2022): 4274. http://dx.doi.org/10.3390/rs14174274.
Texto completo da fonteMontgomery, Rebecca A., Karen E. Rice, Artur Stefanski, Roy L. Rich e Peter B. Reich. "Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range". Proceedings of the National Academy of Sciences 117, n.º 19 (27 de abril de 2020): 10397–405. http://dx.doi.org/10.1073/pnas.1917508117.
Texto completo da fonteGriffin, Kevin L., e Case M. Prager. "Where does the carbon go? Thermal acclimation of respiration and increased photosynthesis in trees at the temperate-boreal ecotone". Tree Physiology 37, n.º 3 (15 de fevereiro de 2017): 281–84. http://dx.doi.org/10.1093/treephys/tpw133.
Texto completo da fonteDrouin, Mélanie, Robert Bradley, Line Lapointe e Joann Whalen. "Non-native anecic earthworms (Lumbricus terrestris L.) reduce seed germination and seedling survival of temperate and boreal trees species". Applied Soil Ecology 75 (março de 2014): 145–49. http://dx.doi.org/10.1016/j.apsoil.2013.11.006.
Texto completo da fonteLupi, Carlo, Hubert Morin, Annie Deslauriers, Sergio Rossi e Daniel Houle. "Increasing nitrogen availability and soil temperature: effects on xylem phenology and anatomy of mature black spruce1This article is one of a selection of papers from the 7th International Conference on Disturbance Dynamics in Boreal Forests." Canadian Journal of Forest Research 42, n.º 7 (julho de 2012): 1277–88. http://dx.doi.org/10.1139/x2012-055.
Texto completo da fontevan Leeuwen, T. T., G. R. van der Werf, A. A. Hoffmann, R. G. Detmers, G. Rücker, N. H. F. French, S. Archibald et al. "Biomass burning fuel consumption rates: a field measurement database". Biogeosciences Discussions 11, n.º 6 (5 de junho de 2014): 8115–80. http://dx.doi.org/10.5194/bgd-11-8115-2014.
Texto completo da fonteDanks, H. V., e R. G. Foottit. "INSECTS OF THE BOREAL ZONE OF CANADA". Canadian Entomologist 121, n.º 8 (agosto de 1989): 625–90. http://dx.doi.org/10.4039/ent121625-8.
Texto completo da fonteBell, F. Wayne, Maureen Kershaw, Isabelle Aubin, Nelson Thiffault, Jennifer Dacosta e Alan Wiensczyk. "Ecology and Traits of Plant Species that Compete with Boreal and Temperate Forest Conifers: An Overview of Available Information and its Use in Forest Management in Canada". Forestry Chronicle 87, n.º 02 (abril de 2011): 161–74. http://dx.doi.org/10.5558/tfc2011-006.
Texto completo da fonteMan, Rongzhou, e Pengxin Lu. "Effects of thermal model and base temperature on estimates of thermal time to bud break in white spruce seedlings". Canadian Journal of Forest Research 40, n.º 9 (setembro de 2010): 1815–20. http://dx.doi.org/10.1139/x10-129.
Texto completo da fonteLocosselli, Giuliano Maselli, Roel J. W. Brienen, Melina de Souza Leite, Manuel Gloor, Stefan Krottenthaler, Alexandre A. de Oliveira, Jonathan Barichivich et al. "Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature". Proceedings of the National Academy of Sciences 117, n.º 52 (14 de dezembro de 2020): 33358–64. http://dx.doi.org/10.1073/pnas.2003873117.
Texto completo da fonteCoulombe, David, Luc Sirois e David Paré. "Effect of harvest gap formation and thinning on soil nitrogen cycling at the boreal–temperate interface". Canadian Journal of Forest Research 47, n.º 3 (março de 2017): 308–18. http://dx.doi.org/10.1139/cjfr-2016-0301.
Texto completo da fonteRey, Fabian, Erika Gobet, Christoph Schwörer, Albert Hafner, Sönke Szidat e Willy Tinner. "Climate impacts on vegetation and fire dynamics since the last deglaciation at Moossee (Switzerland)". Climate of the Past 16, n.º 4 (28 de julho de 2020): 1347–67. http://dx.doi.org/10.5194/cp-16-1347-2020.
Texto completo da fontevan Leeuwen, T. T., G. R. van der Werf, A. A. Hoffmann, R. G. Detmers, G. Rücker, N. H. F. French, S. Archibald et al. "Biomass burning fuel consumption rates: a field measurement database". Biogeosciences 11, n.º 24 (19 de dezembro de 2014): 7305–29. http://dx.doi.org/10.5194/bg-11-7305-2014.
Texto completo da fonteCienciala, Emil, Per-Erik Mellander, Jiří Kučera, Magda Oplutilová, Mikaell Ottosson-Löfvenius e Kevin Bishop. "The effect of a north-facing forest edge on tree water use in a boreal Scots pine stand". Canadian Journal of Forest Research 32, n.º 4 (1 de abril de 2002): 693–702. http://dx.doi.org/10.1139/x02-013.
Texto completo da fonteOogathoo, Shalini, Louis Duchesne, Daniel Houle e Daniel Kneeshaw. "Characterizing Seasonal Radial Growth Dynamics of Balsam Fir in a Cold Environment Using Continuous Dendrometric Data: A Case Study in a 12-Year Soil Warming Experiment". Sensors 22, n.º 14 (9 de julho de 2022): 5155. http://dx.doi.org/10.3390/s22145155.
Texto completo da fonte