Literatura científica selecionada sobre o tema "Technique additive"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Technique additive".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Technique additive"
Prajapati, Devendra Kumar, e Ravinder Kumar. "Additive Manufacturing Sustainability in Industries". Advanced Science, Engineering and Medicine 12, n.º 7 (1 de julho de 2020): 894–99. http://dx.doi.org/10.1166/asem.2020.2647.
Texto completo da fonteНагулин, К., K. Nagulin, С. Курынцев, S. Kuryntsev, А. Горунов e A. Gorunov. "Additive Techniques – the third industrial revolution". Science intensive technologies in mechanical engineering 1, n.º 7 (4 de julho de 2016): 39–44. http://dx.doi.org/10.12737/20599.
Texto completo da fonteLong, Jingjunjiao, Ashveen Nand e Sudip Ray. "Application of Spectroscopy in Additive Manufacturing". Materials 14, n.º 1 (4 de janeiro de 2021): 203. http://dx.doi.org/10.3390/ma14010203.
Texto completo da fonteTorralba Arias de Reyna, Álvaro, e Carlos Linares López. "Size-Independent Additive Pattern Databases for the Pancake Problem". Proceedings of the International Symposium on Combinatorial Search 2, n.º 1 (19 de agosto de 2021): 164–71. http://dx.doi.org/10.1609/socs.v2i1.18193.
Texto completo da fonteWrześniewska-Tosik, Krystyna, Tomasz Mik, Ewa Wesołowska, Sarah Montes, Tomasz Kowalewski e Michał Kudra. "Composite Nonwovens with Natural Additive". Fibres and Textiles in Eastern Europe 28, n.º 1(139) (29 de fevereiro de 2020): 123–29. http://dx.doi.org/10.5604/01.3001.0013.5867.
Texto completo da fonteUralde, Virginia, Fernando Veiga, Eider Aldalur, Alfredo Suarez e Tomas Ballesteros. "Symmetry and Its Application in Metal Additive Manufacturing (MAM)". Symmetry 14, n.º 9 (1 de setembro de 2022): 1810. http://dx.doi.org/10.3390/sym14091810.
Texto completo da fonteMendricky, Radomir. "ACCURACY ANALYSIS OF ADDITIVE TECHNIQUE FOR PARTS MANUFACTURING". MM Science Journal 2016, n.º 05 (16 de novembro de 2016): 1502–8. http://dx.doi.org/10.17973/mmsj.2016_11_2016169.
Texto completo da fonteSasaki, Takafumi, Hitoshi Iwatsuki, Takeo Yamaguchi e Daichi Yamaguchi. "Coated Powder Based Additive Manufacturing using Inkjet Technique". NIP & Digital Fabrication Conference 32, n.º 1 (12 de setembro de 2016): 139–42. http://dx.doi.org/10.2352/issn.2169-4451.2017.32.139.
Texto completo da fonteSasaki, Takafumi, Hitoshi Iwatsuki, Takeo Yamaguchi e Daichi Yamaguchi. "Coated Powder Based Additive Manufacturing using Inkjet Technique". NIP & Digital Fabrication Conference 32, n.º 1 (12 de setembro de 2016): 139–42. http://dx.doi.org/10.2352/issn.2169-4451.2016.32.1.art00038_1.
Texto completo da fonteHsu, S. C., D. Lin-Vien e R. N. French. "Probing the Concentration Profiles of Additives in Polymers by IR Microspectroscopy: The Diffusion of Cyasorb UV531 in Polypropylene". Applied Spectroscopy 46, n.º 2 (fevereiro de 1992): 225–28. http://dx.doi.org/10.1366/0003702924125690.
Texto completo da fonteTeses / dissertações sobre o assunto "Technique additive"
Ristovski, Nikola. "Melt electrospinning as an additive manufacturing technique". Thesis, Queensland University of Technology, 2018. https://eprints.qut.edu.au/118057/1/Nikola_Ristovski_Thesis.pdf.
Texto completo da fonteGullapalli, Vikranth. "Study of Metal Whiskers Growth and Mitigation Technique Using Additive Manufacturing". Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc804972/.
Texto completo da fonteDenis, Corentin. "Variations dimensionnelles d'une céramique dentaire alumineuse mise en forme par technique additive". Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILS050.
Texto completo da fonteAn additive manufacturing method for dental ceramics was developed at Ceramaths, part of the Polytechnic University of Hauts-de-France. Previous work has shown that using alumina ceramic suspensions with 80% solid content by weight, vat photopolymerization enables the shaping of infrastructure ceramics with mechanical properties that meet current dental requirements. Indeed, ceramic frameworks must adhere to strict specifications regarding their fit precision to the dental preparation and their mechanical properties.Ceramic parts fabricated using additive techniques exhibit anisotropic shrinkage (different shrinkage rates along the three dimensions of a sintered part compared to its initial volume) following thermal debinding and densification treatment. The prosthetic part must be oversized to ensure the restoration adapts to the dental preparation after thermal treatment and to minimize the risk of restoration failure. A study on shrinkage rates and deformations of parts with increasingly complex geometries was conducted. These different part morphologies were digitized using microtomography, and the files were analyzed using inspection and control software.In the study of simple parallelepiped morphologies, variations in layer width and the number of layers showed anisotropic shrinkage rates, equivalent in the direction perpendicular to the forming process but higher in the forming direction. Shape variations of the simplified models do not influence the different shrinkage rates. The maximum acceptable viscosity depends on the layer surface area as well as the distance between two surfaces, which impacts the deformations due to the forming process and thermal treatment.The dimensional study of hollow cylindrical parts showed that the larger the layer surface area, the greater the risk of defects, and the orientation of the part also influences deformations during thermal treatment. The optimal orientation must therefore be a compromise between manufacturing time, limiting deformations with the smallest possible layer surface area, and ensuring optimal mechanical properties.Following the study of deformations in a clinical crown framework, the results in terms of forming accuracy showed that the manufacturing process combining the CryoPrinter® (Cryoceram®) printer, CryoCeram® resin, and CT 1200SG® alumina (Almatis®) is reproducible regardless of the forming orientation. The accuracy values of the printed restorations were below the 120 μm threshold except for the marginal zone when the mesio-distal orientation was chosen. The occluso-cervical orientation produced the most accurate restorations relative to the digital model at the marginal level. Lastly, the occlusal gap values were significantly lower for the occluso-cervical orientation compared to the vestibulo-palatal orientation, with the latter being the only one also presenting a mean marginal gap value below 120 μm. Thus, for shaping using the process developed by CryoCeram®, the occluso-cervical orientation seems preferable for producing clinically acceptable crown frameworks.Finally, an evaluation of the non-cytotoxicity of the parts formed using this new process was conducted to consider potential clinical use
Hasting, William. "Geometric Effects of Free-Floating Technique on Alloy 718 Parts Produced via Laser-Powder Bed Fusion". University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613751580039925.
Texto completo da fonteFalck, Rielson [Verfasser]. "A new additive manufacturing technique for layered metal-composite hybrid structures / Rielson Miler Moreira Falck". Hamburg : Universitätsbibliothek der Technischen Universität Hamburg-Harburg, 2020. http://d-nb.info/1224270835/34.
Texto completo da fonteYosofi, Mazyar. "Méthodologie de caractérisation prédictive des procédés de fabrication additive avec une approche technique, économique et environnementale". Thesis, Ecole centrale de Nantes, 2018. http://www.theses.fr/2018ECDN0034/document.
Texto completo da fonteThe United Nations aims to modernize industries in order to make them sustainable and more environmentally friendly by 2030. In order to meet these expectation, it is necessary to put in place ways of improving production processes from an environmental point of view. This approach requires a detailed knowledge of the incoming and outgoing flows during the manufacturing of a product. However, this is not the case for additive manufacturing processes where the environmental impacts generated during this stage are still unknown. For that, a quantitative evaluation of the flows involved during the manufaturing of parts is necessary in order to improve the knowledge of the environmental performance of a process. The work of this thesis focuses on the development of methodology for additive manufacturing processes in order to predict information on the technical, economic, and environmental aspects of a product during the design stage of a part. The methodology developped is increasingly interested in all the sources of consumption as well as all the stages necessary for the manufacturing of a mechanical part.This manuscript is divided into six chapters that can present the general context of the study, the state of the art, the methodology developped, a application of the methodology to additive manufacturing processes and the computer tool developed during this thesis. The last chapter is devoted to the conclusion on the contributions of this work and provides research perspectives
Asadollahiyazdi, Elnaz. "Integrated Design of Additive Manufacturing Based on Design for Manufacturing and Skin-skeleton Models". Thesis, Troyes, 2018. http://www.theses.fr/2018TROY0026.
Texto completo da fonteNowadays, Additive Manufacturing (AM) evolves the manufacturing world by its capabilities for production of the complex shapes layer by layer. Design For Manufacturing (DFM) approach helps to overcome the AM constraints and mastering product features in product lifecycle. Several studies are devoted to integrated design approach for AM, but there is no approach that considers all product life cycle steps in optimization level for product and manufacturing process. So, this thesis provides a DFM approach for AM to investigate simultaneously different attributes, constraints, and criteria of design and manufacturing in product definition. Skin-Skeleton approach models the first definition of product and AM. It contains functional analysis, usage model, and manufacturing model. In this work, a novel interface processing engine as an interface between product and manufacturing model is developed through analysis of AM technologies and their parameters and criteria. This engine relies on a bi-objective optimization problem to minimize production time and material mass under limitation of mechanical properties and roughness of the product to obtain the optimal manufacturing parameters. This methodology permits to define the product model. The approach is implemented into Fused Deposition Modeling to verify the methodology through two case studies
Zaman, Uzair khaleeq uz. "Intégration Produit-Process appliquée à la sélection de procédés de Fabrication Additive". Thesis, Paris, ENSAM, 2019. http://www.theses.fr/2019ENAM0006/document.
Texto completo da fonteThe doctoral research focuses to build an integrated approach that can simultaneously handle the product and process parameters related to additive manufacturing (AM). Since, market dynamics of today are constantly evolving, drivers such as mass customization strategies, shorter product development cycles, a large pool of materials to choose from, abundant manufacturing processes, etc., have made it essential to choose the right compromise of materials, manufacturing processes and associated machines in early stages of design considering the Design for AM guidelines. As several criteria, material attributes and process functionality requirements are involved for decision making in the industries, the thesis introduces a generic decision methodology, based on multi-criteria decision-making tools, that can not only provide a set of compromised AM materials, processes and machines but will also act as a guideline for designers to achieve a strong foothold in the AM industry by providing practical solutions containing design oriented and feasible material-machine combinations from a database of 38 renowned AM vendors in the world today
Johansson, Ingrid. "Post-processing for roughness reduction of additive manufactured polyamide 12 using a fully automated chemical vapor technique - The effect on micro and macrolevel". Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279316.
Texto completo da fonteMöjligheten att tillverka komplexa geometrier på ett snabbt sätt, har fått additiv tillverkning att öka i popularitet. Selective laser sintering (SLS) är en typ av additiv tillverkning där polymer pulver sintras samman succesivt lager för lager. Dessa lager bygger tillsammans upp den önskade geometrin. De största nackdelarna med SLS är att de tillverkade delarna har bristande mekaniska egenskaper, har brister i reproducerbarheten samt att ytan har en dålig kvalitet, den är ojämn. Ytojämnheten ökar risken för att bakterier fastnar och ett en biofilm bildas. Då produkten ska användas inom sjukvården, är det viktigt att biofilm bildning undviks. Den här uppsatsen har undersökt möjligheterna att reducera ytojämnheten av SLS-printad polyamid 12 med hjälp av kemisk efterbehandling i PostPro3D. Denna maskin är helt automatisk och åstadkommer ytbehandling genom att förånga lösningsmedel som sedan kondenserar på det SLS-printade materialet. Ytan på materialet löses upp vilket minskar ytojämnheter i form av pulver partiklar samt sluter porer på ytan. Genom att ändra på parametrarna för efterbehandlingen kan graden av aggressivitet påverkas, detta gäller tryck, temperatur, tid och lösningsmedels volym. De optimala parametrarna för att åstadkomma en jämn yta utvärderades med en Design of Experiments (DoE). Reducering av ytojämnhet mättes med hjälp av aritmetisk genomsnittlig ojämnhet (Ra), tio-punkts höjd ojämnhet (Rz) och medel-vågighet (Wa), med nålprofilometer och konfokal mikroskop. Efterbehandlingens påverkan på de mekaniska egenskaperna utvärderades i ett dragprov, medan mikrostrukturen undersöktes med svepelektronmikroskop (SEM). Ytjämnheten, de mekaniska egenskaperna och mikrostrukturen jämfördes mellan icke behandlade prover och ytbehandlade prover, med varierad grad av aggressivitet. Resultaten indikerade att tid och volym hade störst effekt på Ra och Rz, medan tid hade störst positiv inverkan på töjning, styrka och seghet. Effekten på styvheten (E-modulen) och vågigheten (Wa) var mindre uppenbar, och någon tydlig påverkan kunde inte observeras. SEM-analys visade att fullständig upplösning av partiklar på ytan inte sker för de testade behandlingarna, men en tydlig förbättring kunde ses vid jämförelse av ett obehandlat prov och ett behandlat prov. Den ökade ytjämnheten för längre tid och högre volym tros bero på en ökad kondensering av lösningsmedel på ytan under efterbehandlingen. Ökningen i mekaniska egenskaperna är troligtvis relaterade till eliminering av kritiska defekter på ytan. Generellt visade de mekaniska egenskaper en stor spridning i resultaten, detta tros bero på inneboende egenskaper i provstavarna. Denna slutsats understryker den bristande reproducerbarheten för SLS-printning. En optimal ytjämnhet antas vara ett Ra värde under 1 µm, denna ytjämnhet har inte uppnåtts med de testade efterbehandlingsparameter värdena, därför krävs ytterligare parameter optimering för att nå optimal efterbehandling.
Cormier, Yannick. "Performance, Manufacturability and Mechanical Properties of Near-Net Shaped Pyramidal Fin Arrays for Compact Heat Exchangers Produced Using Cold Spray as an Additive Manufacturing Technique". Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34981.
Texto completo da fonteLivros sobre o assunto "Technique additive"
Alam, Zafar, Faiz Iqbal e Dilshad Ahmad Khan. Post-processing Techniques for Additive Manufacturing. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003288619.
Texto completo da fonteAlami, Abdul Hai, ed. Sustainable Additive Technologies and Innovative Manufacturing Techniques. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-73657-5.
Texto completo da fonteF, Castillo Jesús M., ed. Banach space techniques underpinning a theory for nearly additive mappings. Warszawa: Polska Akademia Nauk, Instytut Matematyczny, 2002.
Encontre o texto completo da fonteMatyjaszewski, K., Brent S. Sumerlin e Nicolay V. Tsarevsky. Progress in controlled radical polymerization: Mechanisms and techniques. Washington, DC: American Chemical Society, 2012.
Encontre o texto completo da fonteJoint FAO/WHO Expert Committee on Food Additives. Guide to specifications for general notices, general analytical techniques, identification tests, test solutions, and other reference materials. Rome: Food and Agriculture Organization of the United Nations, 1991.
Encontre o texto completo da fonteJoint FAO/WHO Expert Committee on Food Additives. Guide to specifications for general notices, general analytical techniques, identification tests, test solutions, and other reference materials. Rome: Food and Agriculture Organization of the United Nations, 1991.
Encontre o texto completo da fonteSeo, Anna H. Review of techniques for enhancement of ultrasound contrast of liquids using microcavitation and other additives. [Toronto: Faculty of Dentistry, University of Toronto], 1995.
Encontre o texto completo da fonteHirotoshi, Tamura, e American Chemical Society. Division of Agricultural and Food Chemistry., eds. Food flavor: Chemistry, sensory evaluation, and biological activity. Washington, DC: American Chemical Society, 2008.
Encontre o texto completo da fonteHirotoshi, Tamura, e American Chemical Society. Division of Agricultural and Food Chemistry., eds. Food flavor: Chemistry, sensory evaluation, and biological activity. Washington, DC: American Chemical Society, 2008.
Encontre o texto completo da fonteMakarenkov, Dmitriy, e Vyacheslav Nazarov. Technique and technology of granulation of multicomponent polydisperse materials using combined processes of their preparation. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/1873862.
Texto completo da fonteCapítulos de livros sobre o assunto "Technique additive"
Ogawa, Kazuhiro. "Cold Spray Technique". In Multi-dimensional Additive Manufacturing, 143–59. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7910-3_10.
Texto completo da fonteSrivastava, Manu, Sandeep Rathee, Sachin Maheshwari e T. K. Kundra. "Additive Manufacturing Processes Utilizing Powder Bed Fusion Technique". In Additive Manufacturing, 81–98. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781351049382-7.
Texto completo da fontePriyadharshni, M., P. Nagajothi, Ponharieesh e R. Ganesh. "Diabetic Retinopathy Image Recognition Using AI Technique". In Advances in Additive Manufacturing Technologies, 124–28. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003545774-22.
Texto completo da fonteGoswami, Tuhina, Shatarupa Biswas, Santanu Das e Manidipto Mukherjee. "An overview of wire arc additive manufacturing (WAAM) technique with different alloys in modern manufacturing industries". In Hybrid Metal Additive Manufacturing, 19–29. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003406488-2.
Texto completo da fonteSingh, Talwinder, e Davinder Singh. "Formation, Testing, and Deposition of Bioactive Material Using Thermal Spray Additive Manufacturing Technique". In Additive Manufacturing of Bio-implants, 45–58. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-6972-2_3.
Texto completo da fonteRaj, Jawahar R., Kumar S. Lakshmana, D. Jayabalakrishnan e S. Somasundaram. "Inspection of Defects in Weldments of Manuarite 900 Alloy using Ultrasound B Spline Imaging Technique". In Advances in Additive Manufacturing Technologies, 503–6. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003545774-90.
Texto completo da fonteVinay, M., e B. Navin Kumar. "Comparative Analysis of Surface Roughness in Monel Alloy Using Novel Minimum Quantity Lubrication Technique and Dry Machining". In Advances in Additive Manufacturing Technologies, 251–56. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003545774-45.
Texto completo da fonteIqbal, Asma, e Syed Akhlaq Ahmad. "Energy Saving Technique for Separation of a Fuel Additive". In Lecture Notes in Mechanical Engineering, 519–25. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0159-0_46.
Texto completo da fonteSingh, Laiphrakpam Indrajit, e Khwairakpam Sachidananda. "Metal Additive Manufacturing Technique in Construction Industry: A Review Paper". In Springer Proceedings in Materials, 31–42. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3844-5_5.
Texto completo da fonteMaurya, Manish, Ambrish Maurya e Sudhir Kumar. "Solid State Additive Manufacturing: An Unconventional Technique to Fabricate Composite". In Materials Horizons: From Nature to Nanomaterials, 135–50. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0888-8_7.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Technique additive"
Chen, Xiangyu, Lu Qiu e Jianqin Zhu. "Laser additive modification: a technique for directional ceramization of metal surfaces". In 4th International Conference on Laser, Optics and Optoelectronic Technology (LOPET 2024), editado por Suihu Dang e Manuel Filipe Costa, 112. SPIE, 2024. http://dx.doi.org/10.1117/12.3040220.
Texto completo da fonteDwivedi, Vivek, Manish Raj, Ajeet Yadav e Anuj Kumar Sharma. "Additive Fabrication and Additive Technique: A Survey". In 2019 4th International Conference on Information Systems and Computer Networks (ISCON). IEEE, 2019. http://dx.doi.org/10.1109/iscon47742.2019.9036292.
Texto completo da fonteDegtyaryov, Andrey, e Gennadiy Slyozkin. "Technique for Suppressing Additive and Multiplicative Noises". In 2021 International Conference Engineering and Telecommunication (En&T). IEEE, 2021. http://dx.doi.org/10.1109/ent50460.2021.9681746.
Texto completo da fonteChansri, Natthavika, Kittiya Janokul, Natsima Thamnitatsan e Pisut Koomsap. "Experimental Study on Support Material Composition for Selective Vacuum Manufacturing RP Technique". In 1st International Conference on Progress in Additive Manufacturing. Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-0446-3_017.
Texto completo da fonteTan, Y. S. E., e W. Y. Yeong. "Direct Bioprinting of Alginate-Based Tubular Constructs Using Multi-Nozzle Extrusion-Based Technique". In 1st International Conference on Progress in Additive Manufacturing. Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-0446-3_093.
Texto completo da fonteKhorramdin, Majid, Milad Amini, Nasser Torabi e Mojtaba Mahdavi. "Improving reversible image watermarking using additive interpolation technique". In 2014 7th International Symposium on Telecommunications (IST). IEEE, 2014. http://dx.doi.org/10.1109/istel.2014.7000841.
Texto completo da fonteKulkarni, Anup, Vivek C. Peddiraju, Subhradeep Chatterjee e Dheepa Srinivasan. "Effect of Build Geometry and Porosity in Additively Manufactured CuCrZr". In 2022 International Additive Manufacturing Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iam2022-93986.
Texto completo da fonteLiang, Min, Corey Shemelya, Eric MacDonald, Ryan Wicker e Hao Xin. "Fabrication of microwave patch antenna using additive manufacturing technique". In 2014 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium). IEEE, 2014. http://dx.doi.org/10.1109/usnc-ursi.2014.6955652.
Texto completo da fontePons-Abenza, Alejandro, Alejandro Alvarez-Melcon, Fernando D. Quesada-Pereira e Lara Arche-Andradas. "Frequency Correction Design Technique for Additive Manufactured Cavity Filters". In 2018 48th European Microwave Conference (EuMC). IEEE, 2018. http://dx.doi.org/10.23919/eumc.2018.8541362.
Texto completo da fonteWankhede, Sahil, Xian Du, Ali Alshehri, Keith Brashler e Doru Turcan. "Encapsulating and Inkjet-Printing Electronics on Flexible Substrates for Harsh Environment". In 2022 International Additive Manufacturing Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iam2022-92250.
Texto completo da fonteRelatórios de organizações sobre o assunto "Technique additive"
Spencer, Ryan, Adwoa Owusu, Uday Vaidya, Vlastimil Kunc e Ahmed Hassen. STRUCTURAL HEALTH MONITORING FOR LARGE-SCALE ADDITIVE MANUFACTURING USING ACOUSTIC EMISSION TECHNIQUE. Office of Scientific and Technical Information (OSTI), junho de 2024. http://dx.doi.org/10.2172/2394721.
Texto completo da fonteOSIYANOVA, A., e I. FALALEEVA. THE SPECIFICS OF THE TRANSLATION OF IRONY IN MARGARET MITCHELL’S NOVEL “GONE WITH THE WIND”. Science and Innovation Center Publishing House, 2022. http://dx.doi.org/10.12731/2077-1770-2022-14-2-3-23-30.
Texto completo da fonteÑopo, Hugo R. The Gender Wage Gap in Chile 1992-2003: From a Matching Comparisons Perspective. Inter-American Development Bank, maio de 2006. http://dx.doi.org/10.18235/0010863.
Texto completo da fonteScime, Luke, James Haley, William Halsey, Alka Singh, Michael Sprayberry, Amir Ziabari e Vincent Paquit. Development of Monitoring Techniques for Binderjet Additive Manufacturing of Silicon Carbide Structures. Office of Scientific and Technical Information (OSTI), outubro de 2020. http://dx.doi.org/10.2172/1671401.
Texto completo da fonteDehoff, Ryan, Rangasayee Kannan e Peeyush Nandwana. Development of Repair Techniques for Cast Iron Engine Blocks by Additive Manufacturing. Office of Scientific and Technical Information (OSTI), julho de 2021. http://dx.doi.org/10.2172/1811420.
Texto completo da fonteAtherosclerosis Biomarkers by Computed Tomography Angiography (CTA). Chair Andrew Buckler, Luca Saba e Uwe Joseph Schoepf. Radiological Society of North America (RSNA) / Quantitative Imaging Biomarkers Alliance (QIBA), março de 2023. http://dx.doi.org/10.1148/qiba/20230328.
Texto completo da fonteSaba, Luca, e Uwe Joseph Schoepf. Atherosclerosis Biomarkers by Computed Tomography Angiography (CTA) - Maintenance version June 2024. Chair Andrew Buckler. Radiological Society of North America (RSNA) / Quantitative Imaging Biomarkers Alliance (QIBA), junho de 2024. http://dx.doi.org/10.1148/qiba/202406.
Texto completo da fonteScime, Luke, James Haley e Vincent Paquit. Monitoring for Additive Manufacturing Technologies: Report on Progress, Achievements, and Limitations of Monitoring Techniques. Office of Scientific and Technical Information (OSTI), setembro de 2019. http://dx.doi.org/10.2172/1823379.
Texto completo da fonteGiannoulakis, Stylianos, e Arrigo Beretta. PR-471-18210-R01 Pump Failure and Performance Degradation Prediction. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), setembro de 2020. http://dx.doi.org/10.55274/r0011801.
Texto completo da fonteScime, Luke, William Halsey, James Haley, Alka Singh, Michael Sprayberry, Amir Ziabari e Vincent Paquit. Development of Monitoring Techniques for Laser Powder Bed Additive Manufacturing of Metal Structures (Progress Report). Office of Scientific and Technical Information (OSTI), setembro de 2020. http://dx.doi.org/10.2172/1675044.
Texto completo da fonte