Artigos de revistas sobre o tema "Tanyctes"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Tanyctes".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Yoo, Sooyeon, Juhyun Kim, Pin Lyu, Thanh V. Hoang, Alex Ma, Vickie Trinh, Weina Dai et al. "Control of neurogenic competence in mammalian hypothalamic tanycytes". Science Advances 7, n.º 22 (maio de 2021): eabg3777. http://dx.doi.org/10.1126/sciadv.abg3777.
Texto completo da fonteWittmann, Gabor, Surbhi Gahlot, Malcolm James Low e Ronald M. Lechan. "Rax Expression Identifies a Novel Cell Type in the Adult Mouse Hypothalamus". Journal of the Endocrine Society 5, Supplement_1 (1 de maio de 2021): A42. http://dx.doi.org/10.1210/jendso/bvab048.082.
Texto completo da fonteBolborea, Matei, Marie-Pierre Laran-Chich, Kamontip Rasri, Herbert Hildebrandt, Piyarat Govitrapong, Valérie Simonneaux, Paul Pévet, Stephan Steinlechner e Paul Klosen. "Melatonin Controls Photoperiodic Changes in Tanycyte Vimentin and Neural Cell Adhesion Molecule Expression in the Djungarian Hamster (Phodopus sungorus)". Endocrinology 152, n.º 10 (16 de agosto de 2011): 3871–83. http://dx.doi.org/10.1210/en.2011-1039.
Texto completo da fontede Vries, E. M., J. Kwakkel, L. Eggels, A. Kalsbeek, P. Barrett, E. Fliers e A. Boelen. "NFκB Signaling Is Essential for the Lipopolysaccharide-Induced Increase of Type 2 Deiodinase in Tanycytes". Endocrinology 155, n.º 5 (1 de maio de 2014): 2000–2008. http://dx.doi.org/10.1210/en.2013-2018.
Texto completo da fonteJawad, Haider, Muthanna Al-Kaabi e Anam Al-Salihi. "IMMUNOHISTOCHEMICAL EXPRESSION OF MONOCARBOXYLATE TRANSPORTER 1&4 IN TANYCYTE–LIKE CELLS OF THE SULCUS MEDIANUS ORGANUM". Iraqi Journal of Medical Sciences 17, n.º 1 (31 de março de 2019): 83–99. http://dx.doi.org/10.22578/ijms.17.1.12.
Texto completo da fontede Seranno, Sandrine, Xavier d'Anglemont de Tassigny, Cecilia Estrella, Anne Loyens, Sergey Kasparov, Danièle Leroy, Sergio R. Ojeda, Jean-Claude Beauvillain e Vincent Prevot. "Role of Estradiol in the Dynamic Control of Tanycyte Plasticity Mediated by Vascular Endothelial Cells in the Median Eminence". Endocrinology 151, n.º 4 (4 de fevereiro de 2010): 1760–72. http://dx.doi.org/10.1210/en.2009-0870.
Texto completo da fonteBolborea, Matei, Gisela Helfer, Francis J. P. Ebling e Perry Barrett. "Dual signal transduction pathways activated by TSH receptors in rat primary tanycyte cultures". Journal of Molecular Endocrinology 54, n.º 3 (30 de março de 2015): 241–50. http://dx.doi.org/10.1530/jme-14-0298.
Texto completo da fonteSánchez, Edith, Praful S. Singru, Gábor Wittmann, Shira S. Nouriel, Perry Barrett, Csaba Fekete e Ronald M. Lechan. "Contribution of TNF-α and Nuclear Factor-κB Signaling to Type 2 Iodothyronine Deiodinase Activation in the Mediobasal Hypothalamus after Lipopolysaccharide Administration". Endocrinology 151, n.º 8 (25 de maio de 2010): 3827–35. http://dx.doi.org/10.1210/en.2010-0279.
Texto completo da fontePorniece Kumar, Marta, Anna Lena Cremer, Paul Klemm, Lukas Steuernagel, Sivaraj Sundaram, Alexander Jais, A. Christine Hausen et al. "Insulin signalling in tanycytes gates hypothalamic insulin uptake and regulation of AgRP neuron activity". Nature Metabolism 3, n.º 12 (dezembro de 2021): 1662–79. http://dx.doi.org/10.1038/s42255-021-00499-0.
Texto completo da fonteBarrett, Perry, Elena Ivanova, E. Scott Graham, Alexander W. Ross, Dana Wilson, Helene Plé, Julian G. Mercer et al. "Photoperiodic regulation of cellular retinoic acid-binding protein 1, GPR50 and nestin in tanycytes of the third ventricle ependymal layer of the Siberian hamster". Journal of Endocrinology 191, n.º 3 (dezembro de 2006): 687–98. http://dx.doi.org/10.1677/joe.1.06929.
Texto completo da fonteSchlagal, Caitlin R., e Ping Wu. "Alcohol and Cocaine Combined Substance Use on Adult Hypothalamic Neural Stem Cells and Neurogenesis". Brain Plasticity 6, n.º 1 (29 de dezembro de 2020): 41–46. http://dx.doi.org/10.3233/bpl-190091.
Texto completo da fonteMarsili, Alessandro, Edith Sanchez, Praful Singru, John W. Harney, Ann Marie Zavacki, Ronald M. Lechan e P. R. Larsen. "Thyroxine-induced expression of pyroglutamyl peptidase II and inhibition of TSH release precedes suppression of TRH mRNA and requires type 2 deiodinase". Journal of Endocrinology 211, n.º 1 (25 de julho de 2011): 73–78. http://dx.doi.org/10.1530/joe-11-0248.
Texto completo da fonteCeriani, Ricardo, e Kathleen E. Whitlock. "Gonadotropin Releasing Hormone (GnRH) Triggers Neurogenesis in the Hypothalamus of Adult Zebrafish". International Journal of Molecular Sciences 22, n.º 11 (31 de maio de 2021): 5926. http://dx.doi.org/10.3390/ijms22115926.
Texto completo da fonteMurphy, Michelle, e Francis J. P. Ebling. "The Role of Hypothalamic Tri-Iodothyronine Availability in Seasonal Regulation of Energy Balance and Body Weight". Journal of Thyroid Research 2011 (2011): 1–7. http://dx.doi.org/10.4061/2011/387562.
Texto completo da fonteLewis, Jo E., John M. Brameld, Phil Hill, Dana Wilson, Perry Barrett, Francis J. P. Ebling e Preeti H. Jethwa. "Thyroid hormone and vitamin D regulate VGF expression and promoter activity". Journal of Molecular Endocrinology 56, n.º 2 (7 de dezembro de 2015): 123–34. http://dx.doi.org/10.1530/jme-15-0224.
Texto completo da fonteSánchez, Edith, Miguel Angel Vargas, Praful S. Singru, Isel Pascual, Fidelia Romero, Csaba Fekete, Jean-Louis Charli e Ronald M. Lechan. "Tanycyte Pyroglutamyl Peptidase II Contributes to Regulation of the Hypothalamic-Pituitary-Thyroid Axis through Glial-Axonal Associations in the Median Eminence". Endocrinology 150, n.º 5 (29 de janeiro de 2009): 2283–91. http://dx.doi.org/10.1210/en.2008-1643.
Texto completo da fonteBolborea, Matei, Eric Pollatzek, Heather Benford, Tamara Sotelo-Hitschfeld e Nicholas Dale. "Hypothalamic tanycytes generate acute hyperphagia through activation of the arcuate neuronal network". Proceedings of the National Academy of Sciences 117, n.º 25 (8 de junho de 2020): 14473–81. http://dx.doi.org/10.1073/pnas.1919887117.
Texto completo da fonteSáenz de Miera, Cristina, Béatrice Bothorel, Catherine Jaeger, Valérie Simonneaux e David Hazlerigg. "Maternal photoperiod programs hypothalamic thyroid status via the fetal pituitary gland". Proceedings of the National Academy of Sciences 114, n.º 31 (17 de julho de 2017): 8408–13. http://dx.doi.org/10.1073/pnas.1702943114.
Texto completo da fonteEgri, P., C. Fekete, Á. Dénes, D. Reglődi, H. Hashimoto, B. D. Fülöp e Balázs Gereben. "Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Regulates the Hypothalamo-Pituitary-Thyroid (HPT) Axis via Type 2 Deiodinase in Male Mice". Endocrinology 157, n.º 6 (5 de abril de 2016): 2356–66. http://dx.doi.org/10.1210/en.2016-1043.
Texto completo da fonteBalland, Églantine, e Vincent Prévot. "Les tanycytes hypothalamiques". médecine/sciences 30, n.º 6-7 (junho de 2014): 624–27. http://dx.doi.org/10.1051/medsci/20143006009.
Texto completo da fonteMüller-Fielitz, Helge, e Markus Schwaninger. "The Role of Tanycytes in the Hypothalamus-Pituitary-Thyroid Axis and the Possibilities for Their Genetic Manipulation". Experimental and Clinical Endocrinology & Diabetes 128, n.º 06/07 (11 de dezembro de 2019): 388–94. http://dx.doi.org/10.1055/a-1065-1855.
Texto completo da fonteEbling, Francis J. P., e Ricardo Samms. "Txnip, Tanycytes, and Torpor". Endocrinology 154, n.º 6 (1 de junho de 2013): 1970–72. http://dx.doi.org/10.1210/en.2013-1390.
Texto completo da fonteOsterstock, Guillaume, Taoufik El Yandouzi, Nicola Romanò, Danielle Carmignac, Fanny Langlet, Nathalie Coutry, Anne Guillou et al. "Sustained Alterations of Hypothalamic Tanycytes During Posttraumatic Hypopituitarism in Male Mice". Endocrinology 155, n.º 5 (1 de maio de 2014): 1887–98. http://dx.doi.org/10.1210/en.2013-1336.
Texto completo da fontePrager-Khoutorsky, Masha, e Charles W. Bourque. "Anatomical organization of the rat organum vasculosum laminae terminalis". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 309, n.º 4 (15 de agosto de 2015): R324—R337. http://dx.doi.org/10.1152/ajpregu.00134.2015.
Texto completo da fonteSullivan, Andrew I., Matthew J. Potthoff e Kyle H. Flippo. "Tany-Seq: Integrated Analysis of the Mouse Tanycyte Transcriptome". Cells 11, n.º 9 (6 de maio de 2022): 1565. http://dx.doi.org/10.3390/cells11091565.
Texto completo da fonteLazcano, Iván, Agustina Cabral, Rosa María Uribe, Lorraine Jaimes-Hoy, Mario Perello, Patricia Joseph-Bravo, Edith Sánchez-Jaramillo e Jean-Louis Charli. "Fasting Enhances Pyroglutamyl Peptidase II Activity in Tanycytes of the Mediobasal Hypothalamus of Male Adult Rats". Endocrinology 156, n.º 7 (5 de maio de 2015): 2713–23. http://dx.doi.org/10.1210/en.2014-1885.
Texto completo da fonteElizondo-Vega, Roberto, Karina Oyarce, Magdiel Salgado, María José Barahona, Antonia Recabal, Patricio Ordenes, Sergio López, Roxana Pincheira, Patricia Luz-Crawford e María Angeles García-Robles. "Inhibition of Hypothalamic MCT4 and MCT1–MCT4 Expressions Affects Food Intake and Alters Orexigenic and Anorexigenic Neuropeptide Expressions". Molecular Neurobiology 57, n.º 2 (2 de outubro de 2019): 896–909. http://dx.doi.org/10.1007/s12035-019-01776-6.
Texto completo da fonteBellamy, Charlotte, Hannah Tovell, Florent Dingli, Stephane Liva, Damarys Loew, Eduard Stefan, Selina Schwaighofer, Alexandra Newton, Marc Sanson e Franck Bielle. "CSIG-30. FUNCTIONAL CHARACTERISATION OF A NOVEL MUTATION IN PRKCA, THE MAJOR DRIVER OF CHORDOID GLIOMAS". Neuro-Oncology 25, Supplement_5 (1 de novembro de 2023): v47. http://dx.doi.org/10.1093/neuonc/noad179.0186.
Texto completo da fonteDale, Nicholas, e Cameron Frayling. "Tanycytes emerge as hypothalamic chemosensors". Physiology News, Spring 2012 (1 de abril de 2012): 26–29. http://dx.doi.org/10.36866/pn.86.26.
Texto completo da fonteDietrich, Marcelo O., e Tamas L. Horvath. "Fat incites tanycytes to neurogenesis". Nature Neuroscience 15, n.º 5 (25 de abril de 2012): 651–53. http://dx.doi.org/10.1038/nn.3091.
Texto completo da fonteFrayling, Cameron, Ruth Britton e Nicholas Dale. "ATP-mediated glucosensing by hypothalamic tanycytes". Journal of Physiology 589, n.º 9 (27 de abril de 2011): 2275–86. http://dx.doi.org/10.1113/jphysiol.2010.202051.
Texto completo da fonteGao, Yuanqing, Matthias H. Tschöp e Serge Luquet. "Hypothalamic Tanycytes: Gatekeepers to Metabolic Control". Cell Metabolism 19, n.º 2 (fevereiro de 2014): 173–75. http://dx.doi.org/10.1016/j.cmet.2014.01.008.
Texto completo da fonteSeveri, Ilenia, Marco Fosca, Georgia Colleluori, Federico Marini, Luca Imperatori, Martina Senzacqua, Angelica Di Vincenzo et al. "High-Fat Diet Impairs Mouse Median Eminence: A Study by Transmission and Scanning Electron Microscopy Coupled with Raman Spectroscopy". International Journal of Molecular Sciences 22, n.º 15 (28 de julho de 2021): 8049. http://dx.doi.org/10.3390/ijms22158049.
Texto completo da fontePrévot, Vincent. "Brain infection by SARS-CoV-2: Lifelong consequences". Open Access Government 41, n.º 1 (23 de janeiro de 2024): 22–23. http://dx.doi.org/10.56367/oag-041-10397.
Texto completo da fontePrzybylska-Piech, Anna S., Victoria Diedrich e Annika Herwig. "Seasonal changes in activity of hypothalamic thyroid hormone system in different winter phenotypes of Djungarian hamster (Phodopus sungorus)". PLOS ONE 19, n.º 10 (25 de outubro de 2024): e0309591. http://dx.doi.org/10.1371/journal.pone.0309591.
Texto completo da fontePrevot, Vincent, Markus Schwaninger e Ruben Nogueiras. "The WATCH project: Tanycytes in health and disease". Open Access Government 37, n.º 1 (6 de janeiro de 2023): 132–33. http://dx.doi.org/10.56367/oag-037-10410.
Texto completo da fonteGivalois, Laurent, Sandor Arancibia, Gérard Alonso e Lucia Tapia-Arancibia. "Expression of Brain-Derived Neurotrophic Factor and Its Receptors in the Median Eminence Cells with Sensitivity to Stress". Endocrinology 145, n.º 10 (1 de outubro de 2004): 4737–47. http://dx.doi.org/10.1210/en.2004-0616.
Texto completo da fonteLanglet, F. "Tanycytes: A Gateway to the Metabolic Hypothalamus". Journal of Neuroendocrinology 26, n.º 11 (16 de outubro de 2014): 753–60. http://dx.doi.org/10.1111/jne.12191.
Texto completo da fonteElizondo‐Vega, Roberto, Christian Cortes‐Campos, Maria J. Barahona, Karina A. Oyarce, Claudio A. Carril e Maria A. García‐Robles. "The role of tanycytes in hypothalamic glucosensing". Journal of Cellular and Molecular Medicine 19, n.º 7 (17 de junho de 2015): 1471–82. http://dx.doi.org/10.1111/jcmm.12590.
Texto completo da fonteLanglet, Fanny. "Targeting Tanycytes: Balance between Efficiency and Specificity". Neuroendocrinology 110, n.º 7-8 (2020): 574–81. http://dx.doi.org/10.1159/000505549.
Texto completo da fonteEbling, Francis J. P., e Jo E. Lewis. "Tanycytes and hypothalamic control of energy metabolism". Glia 66, n.º 6 (7 de fevereiro de 2018): 1176–84. http://dx.doi.org/10.1002/glia.23303.
Texto completo da fonteDardente, Hugues. "HYPOTHALAMIC TANYCYTES ARE INVOLVED IN SEASONAL FUNCTIONS." IBRO Neuroscience Reports 15 (outubro de 2023): S52. http://dx.doi.org/10.1016/j.ibneur.2023.08.2159.
Texto completo da fontede Vries, E. M., S. Nagel, R. Haenold, S. M. Sundaram, F. W. Pfrieger, E. Fliers, H. Heuer e A. Boelen. "The Role of Hypothalamic NF-κB Signaling in the Response of the HPT-Axis to Acute Inflammation in Female Mice". Endocrinology 157, n.º 7 (17 de maio de 2016): 2947–56. http://dx.doi.org/10.1210/en.2016-1027.
Texto completo da fonteBarahona, María Jose, Luciano Ferrada e Francisco Nualart. "TANYCYTES-ASSOCIATED G6PASE SYSTEM CONTROL THE ENERGY BALANCE". IBRO Neuroscience Reports 15 (outubro de 2023): S213. http://dx.doi.org/10.1016/j.ibneur.2023.08.340.
Texto completo da fonteBjelke, Börje, e Kjell Fuxe. "Intraventricular β-endorphin accumulates in DARPP-32 immunoreactive tanycytes". NeuroReport 5, n.º 3 (dezembro de 1993): 265–68. http://dx.doi.org/10.1097/00001756-199312000-00021.
Texto completo da fonteBöttcher, Mareike, Helge Müller-Fielitz, Sivaraj M. Sundaram, Sarah Gallet, Vanessa Neve, Kiseko Shionoya, Adriano Zager et al. "NF-κB signaling in tanycytes mediates inflammation-induced anorexia". Molecular Metabolism 39 (setembro de 2020): 101022. http://dx.doi.org/10.1016/j.molmet.2020.101022.
Texto completo da fonteDale, Nicholas. "Purinergic signaling in hypothalamic tanycytes: Potential roles in chemosensing". Seminars in Cell & Developmental Biology 22, n.º 2 (abril de 2011): 237–44. http://dx.doi.org/10.1016/j.semcdb.2011.02.024.
Texto completo da fonteRODRIGUEZ, E., J. BLAZQUEZ, F. PASTOR, B. PELAEZ, P. PENA, B. PERUZZO e P. AMAT. "Hypothalamic Tanycytes: A Key Component of Brain–Endocrine Interaction". International Review of Cytology 247 (2005): 89–164. http://dx.doi.org/10.1016/s0074-7696(05)47003-5.
Texto completo da fonteCup�do, R. N. J., e H. Weerd. "Tanycytes in the medial habenular nucleus of the rat". Anatomy and Embryology 172, n.º 1 (junho de 1985): 7–10. http://dx.doi.org/10.1007/bf00318938.
Texto completo da fonteRivagorda, Manon, Vincent Prevot e Markus Schwaninger. "Seasonal biology: Tanycytes give the hypothalamus a spring makeover". Current Biology 34, n.º 5 (março de 2024): R209—R211. http://dx.doi.org/10.1016/j.cub.2024.01.055.
Texto completo da fonte