Literatura científica selecionada sobre o tema "Tandem photochemical reaction"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Tandem photochemical reaction".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Tandem photochemical reaction"
Saunthwal, Rakesh K., James Mortimer, Andrew J. Orr-Ewing e Jonathan Clayden. "Enantioselective one-carbon expansion of aromatic rings by simultaneous formation and chromoselective irradiation of a transient coloured enolate". Chemical Science 13, n.º 7 (2022): 2079–85. http://dx.doi.org/10.1039/d1sc06684f.
Texto completo da fonteHoffmann, Norbert, Samuel Bertrand, Siniša Marinković e Jens Pesch. "Efficient radical addition of tertiary amines to alkenes using photochemical electron transfer". Pure and Applied Chemistry 78, n.º 12 (1 de janeiro de 2006): 2227–46. http://dx.doi.org/10.1351/pac200678122227.
Texto completo da fonteChiminelli, Maurizio, Gabriele Scarica, Andrea Serafino, Luciano Marchiò, Rosanna Viscardi e Giovanni Maestri. "Visible-Light-Promoted Tandem Skeletal Rearrangement/Dearomatization of Heteroaryl Enallenes". Molecules 29, n.º 3 (25 de janeiro de 2024): 595. http://dx.doi.org/10.3390/molecules29030595.
Texto completo da fonteHou, Yunyan, e Peter Wan. "A pentacene intermediate via formal intramolecular photoredox of a 6,13-pentacenequinone in aqueous solution". Canadian Journal of Chemistry 85, n.º 12 (1 de dezembro de 2007): 1023–32. http://dx.doi.org/10.1139/v07-117.
Texto completo da fonteLiang, Yan Ru, Yu Yun Wen, Xiao Yan Hong, Zhen Bin Gong e Wen Quan Li. "Laboratory Simulation Study of Photo-Degradation Process of Fenvalerate in Aqueous Solution". Applied Mechanics and Materials 312 (fevereiro de 2013): 886–92. http://dx.doi.org/10.4028/www.scientific.net/amm.312.886.
Texto completo da fonteRen, Jia, Elissia T. Franklin e Yu Xia. "Uncovering Structural Diversity of Unsaturated Fatty Acyls in Cholesteryl Esters via Photochemical Reaction and Tandem Mass Spectrometry". Journal of The American Society for Mass Spectrometry 28, n.º 7 (17 de abril de 2017): 1432–41. http://dx.doi.org/10.1007/s13361-017-1639-6.
Texto completo da fonteLi, Hai-Fang, Jing Zhao, Wenbo Cao, Wenpeng Zhang, Yu Xia e Zheng Ouyang. "Site-Specific Photochemical Reaction for Improved C=C Location Analysis of Unsaturated Lipids by Ultraviolet Photodissociation". Research 2022 (12 de fevereiro de 2022): 1–12. http://dx.doi.org/10.34133/2022/9783602.
Texto completo da fonteMa, Xiaoxiao, Leelyn Chong, Ran Tian, Riyi Shi, Tony Y. Hu, Zheng Ouyang e Yu Xia. "Identification and quantitation of lipid C=C location isomers: A shotgun lipidomics approach enabled by photochemical reaction". Proceedings of the National Academy of Sciences 113, n.º 10 (22 de fevereiro de 2016): 2573–78. http://dx.doi.org/10.1073/pnas.1523356113.
Texto completo da fonteJanechek, Nathan J., Rachel F. Marek, Nathan Bryngelson, Ashish Singh, Robert L. Bullard, William H. Brune e Charles O. Stanier. "Physical properties of secondary photochemical aerosol from OH oxidation of a cyclic siloxane". Atmospheric Chemistry and Physics 19, n.º 3 (8 de fevereiro de 2019): 1649–64. http://dx.doi.org/10.5194/acp-19-1649-2019.
Texto completo da fonteBertrand, Samuel, Norbert Hoffmann, Jean-Pierre Pete e Véronique Bulach. "Stereoselective radical-tandem reaction of aniline derivatives with (5R)-5-menthyloxy-2,5-dihydrofuran-2-one initiated by photochemical induced electron transfer". Chemical Communications, n.º 22 (1999): 2291–92. http://dx.doi.org/10.1039/a906051k.
Texto completo da fonteTeses / dissertações sobre o assunto "Tandem photochemical reaction"
Yu, Xiaodan. "New functionalized alkylidenecyclobutanes : multicomponent synthesis and applications". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF034.
Texto completo da fonteCyclobutane derivatives have become increasingly important as molecular building blocks because of their inherent ring strain that facilitates the selective modification of their structures for strategic used in organic synthesis. Cyclobutane rings also appear in the molecular structures of a wide panel of natural and synthetic molecules that display interesting biological activities. Within this large family, alkylidenecyclobutane subunits are encountered in natural products, such as providencin, and they exhibit enhanced reactivity providing access to complex molecular structures, including enlarged ring and highly functionalized cyclobutane derivatives. In our laboratory, we recently developed an efficient synthesis of functionalized cyclobutenes through a domino photochemical reaction starting from cyclopent-2-enones and ethylene. Based on this study, we first explored a straight-forward transformation of functionalized cyclobutenes into alkylidenecyclobutanes. We then combined both sequences in a domino-multicomponent process. This was accomplished in a single protocol, comprising a tandem photochemical [2+2]-cycloaddition / Norrish-I / γ-H transfer reaction followed by an acetal-protection and an allylic substitution reaction. Additionally, the intramolecular version of these reactions allowed the synthesis of complex fused-bicyclic alkylidenecyclobutanes. Finally, the post-funtionalization of selected alkylidenecyclobutanes was studied, aiming to prepare novel fused tricyclic compounds through a intramolecular [2+2] photochemical process
(5929454), Sarju Adhikari. "RADICAL CHEMISTRY AND MASS SPECTROMETRY FOR ENHANCED BIOMOLECULE ANALYSIS". Thesis, 2019.
Encontre o texto completo da fonteElectrospray ionization-tandem mass spectrometry (ESI-MS/MS) has been established as a powerful tool for qualitative and quantitative analysis of biomolecules. However, mass spectrometric analysis of biomolecules is often limited by poor ionization efficiency of analyte for sensitive detection and limited fragmentation for structural characterization. Over the years, various solution phase as well as gas-phase derivatization techniques, have been coupled with MS to increase the ionization efficiency and facilitate the formation of structural informative fragment ions. The research presented in this dissertation falls into two major parts; focusing on method development and application of radical chemistry for enhanced biomolecule analysis on an ESI-MS/MS platform. In the first part, a method of rapid charge tagging of neutral lipids (e.g. sterols, glycerides) with a thiol radical-based charge tag is developed, followed by comprehensive analysis via ESI-MS/MS without the use of a chromatographic separation (shotgun lipidomics). This charge tagging is performed in an easily constructible fused silica capillary-based microflow photo-reactor which is relatively low in cost and requires no instrument modifications. This method significantly enhances the ionization efficiency of the neutral lipids for sensitive MS detection (pM range). This method can be applied to the small volume of biological complex samples (e.g. 1 µL plasma) and doesn’t require extensive sample pretreatment procedure (analysis time of 2 min vs. traditional >60 min on GC-MS and HPLC-MS systems). Furthermore, the derivatized neutral lipids can also be fragmented via soft collision-induced dissociation to obtain fatty acyl chain composition of the neutral lipids (sterol esters, diacylglycerols, triacylglycerols, etc.) for structural characterization. This can especially be useful for determination for fatty acyl compositional isomers in neutral lipids for analysis related to biomarker detection. The characteristic fragmentation pattern of tagged neutral lipids has also been utilized for quantitation of lipids from biological mixture samples. Initial application of this method has shown alteration in the concentration of diacylglycerol lipid species in clinical samples of Type 2 Diabetes Mellitus patients, suggesting the potential of understanding the biological roles of such lipids in insulin resistance.
In the second part, a unique approach of radical-induced disulfide bond cleavage in peptides and proteins is demonstrated. Using 254 nm UV emission, acetone was used as a photoinitiator to initiate secondary radical formation i.e. hydroxyalkyl radical, from alcohol co-solvents used for electrospray. These radicals can then be used to efficiently cleave the disulfide bonds (R-S-S-R) in peptide/proteins to give reduced reaction products (RSH) at the cleavage site. Upon soft collision-induced dissociation, the reduced product gave abundant b- and y- type fragment ions for complete or enhanced sequence coverage as compared to intact disulfide-linked peptides and proteins. With the use of a simple microflow photo-reactor, this radical based approach can also be coupled with infusion ESI-MS/MS for a rapid online-based peptide and protein analysis. The yield for disulfide bond reduction was almost 100% within less than 5 s of UV irradiation. Furthermore, by adjusting the UV irradiance time, different degrees of partial reduction could be achieved, which greatly facilitated the disulfide linkage mapping in peptides and proteins with multiple disulfide bonds. This method has been incorporated with both bottom-up and top-down approach for protein analysis for unraveling the molecular complexity, quantifying and deep sequencing of disulfide-linked proteins.
Capítulos de livros sobre o assunto "Tandem photochemical reaction"
Winkler, J. D., R. D. Scott e P. G. Williard,. "Synthesis of a Vindorosine Precursor". In Exercises in Synthetic Organic Chemistry, 93. Oxford University PressOxford, 1997. http://dx.doi.org/10.1093/oso/9780198559443.003.0067.
Texto completo da fonteLambert, Tristan H. "Flow Chemistry". In Organic Synthesis. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780190200794.003.0017.
Texto completo da fonteTaber, Douglass F. "Reactions of Alkenes". In Organic Synthesis. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199965724.003.0028.
Texto completo da fonte