Teses / dissertações sobre o tema "Systèmes intégrable"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores trabalhos (teses / dissertações) para estudos sobre o assunto "Systèmes intégrable".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja as teses / dissertações das mais diversas áreas científicas e compile uma bibliografia correta.
Boldea, Costin-Radu. "Nouveaux systèmes intégrables et solitons non-analytiques". Paris 6, 2002. http://www.theses.fr/2002PA066042.
Texto completo da fonteNguyen, Van Minh. "Géométrie des systèmes dynamiques non-hamiltoniens intégrables". Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1688/.
Texto completo da fonteThis thesis is dedicated to a systematic study of the geometry of integrable non-Hamiltonian systems of type (n,0) on n-manifolds and of type (1,1) on 2-dimensional surfaces. We describe the local and global invariants, associated geometric structures (e. G. Toric manifolds, singular affine structures, reflection groups), and obtain existence and classification results
Nguyen, Thanh Thien. "Géométrie de systèmes dynamiques stochastiques et modèles de second ordre pour les marchés financiers". Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2481/.
Texto completo da fonteThis thesis is devoted to a study of qualitative geometrical properties of stochastic dynamical systems, namely their symmetries, reduction and integrability, with applications to the problem of modelling of financial markets. It consists of four chapters. Chapter 1 is a brief review of basic notions from the theory of stochastic dynamical systems (SDS for short) written in Stratonovich form, and also Hamiltonian systems. The material in this chapter is not new, and is included in this thesis to make it self-contained. In Chapter 2, we study the problem of reduction of SDS with respect to a proper action of a Lie group. This is an important problem in the theory of dynamical systems in general. Various famous processes in stochastic calculus, e. G. The Bessel process, can be viewed as a result of reduction. But there are still some relatively simple results that we did not find in the literature and so we wrote them down in Chapter 2. In particular, we proved that if a SDS is not invariant but only diffusion-wise invariant with respect to a group action, then we can still do reduction. We also give necessary and sufficient conditions for a SDS to be reductible (i. E. Projectable) with respect to a given submersion map. In Chapter 3, we introduce and study the notion of integrability of SDS. This integrability notion lies between the integrability notion for classical deterministic systems and the integrability notion for quantum dynamical systems. One of the most fundamental results in the theory of classical integrable deterministic dynamical systems is the existence of so called Liouville torus actions which have the structure-preserving property. Those Liouville torus actions imply the quasi-periodic behaviour of proper integrable systems, allow one to do averaging and reduction (also for perturbations of integrable systems), find action-angle variables, and do quantization. We extend this fundamental result about the existence of structure-preserving Liouville torus actions to the case of integrable SDS. We also show how integrable SDS are naturally related to the problem of Riemannian metrics with integrable geodesic flows, which is a very interesting problem in geometry with many recent results in the literature. In Chapter 4, we argue that first order (stochastic differential) models of the stock markets, e. G. The famous Black-Scholes model, is conceptually not correct for the description of what is happening in the financial markets, even though they can be used for pricing financial derivative products. More realistic models of the market must be of second order, i. E. Taking into account both the price variables and the momentum variables. We develope in this chapter two simple second order models, namely the stochastic oscillator and the stochastic constrained n-oscillator, which can explain a lot of phenomena in the markets. A key notion introduced in these models is speculation energy (in analogy with physical energy), and we claim that it is this speculation energy which moves the financial markets
Brodier, Olivier. "Effet tunnel dans les systèmes quasi-intégrables". Paris 6, 2002. http://www.theses.fr/2002PA066056.
Texto completo da fonteGatse, Basile. "Contribution à la recherche des solutions périodiques de l'hamiltonien intégrable d'Henon-Heiles". Pau, 1989. http://www.theses.fr/1989PAUU1005.
Texto completo da fonteLe, Blanc Ariane. "Des structures de (quasi -) Poisson quadratiques sur l'algèbre de lacets pour la construction d'un système intégrable sur un espace de modules". Phd thesis, Université de Poitiers, 2006. http://tel.archives-ouvertes.fr/tel-00114640.
Texto completo da fonteM$ des connexions plates du fibré principal $S\times G$ d'une sphère de
Riemann $S$ (ayant $n\geq 3$ bords), où $G=\GL{N,\C}$ et sur l'algèbre de
lacets $\tilde\g=\gl{N,\C}(\!(\l^\mi)\!)$.
Dans un premier temps, nous étudions une hiérarchie de bidérivations
quadratiques sur $\tilde\g$. En particulier, grâce au processus de fusion
introduit par Alekseev, Kosmann-Schwarzbach et Meinrenken en 2002, nous
extrayons parmi elles une structure $\PB^Q_1$ de quasi-Poisson sur
$\tilde\g$. Celle-ci se restreint au sous-espace
$\tilde\g_n=\set{\sum_{k=0}^nx^{[k]}\l^k}$.
Nous montrons ensuite un résultat de réduction dans un contexte de
bidérivation de quasi-Poisson. Il permet d'équipper le quotient $\mathscr
A/G:=\set{\Id\l^n+\l Y(\l)+\Id|Y\in\tilde\g_{n-2}}/G$ d'une structure de
Poisson induite par $\PB^Q_1$.
En s'appuyant sur le système intégrable de Beauville sur
$\tilde\g_{n-2}/G$, nous montrons que la famille de fonctions $({\text{tr}}
X^k(a))_{k\in\N,a\in\C}$ constitue un système intégrable sur $\mathscr
A/G$. Les fonctions que nous considérons sur l'espace de modules $\mathscr
M$ sont les tiré-en-arrière $(\mathscr
T^*{\text{tr}X^k(a)})_{k\in\N,a\in\C}$, où $\mathscr T:G^n\to\tilde\g_n$
est un morphisme de quasi-Poisson et un difféomorphisme local. Nous
utilisons ces propriétés de $\mathscr T$ pour montrer que cette famille de
fonctions constitue un système intégrable sur $\mathscr M$.
Levy-Bencheton, Damien. "Algèbre de Yang-Baxter dynamique et fonctions de corrélation du modèle SOS intégrable". Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2013. http://tel.archives-ouvertes.fr/tel-00956582.
Texto completo da fonteAlamiddine, Iman. "Géométrie de systèmes Hamiltoniens intégrables : le cas du système de Gelfand-Ceitlin". Toulouse 3, 2009. http://thesesups.ups-tlse.fr/538/.
Texto completo da fonteThe Gelfand-Ceitlin system has been discovered by V. Guillemin and S. Sternberg in 1983. It is a well known geometry, its singularities are yet poorly understood. The aim of this thesis is to study the geometry and topology of integrable Hamiltonian systems and the relationship between the theory of Lie and symplectic geometry and Poisson geometry. We study the Gelfand Ceitlin system on a generic coadjoint orbit of the group SU(3). To describe this system geometrically, we studied the topology of the ambient variety. We calculate its invariants (the cohomology groups, the homotopy groups). We study the problem of convexity in relation with this system. The singularities study of this system shows that all singularities are elliptic non-degenerate, except for only one. We describe carefully the behaviour of the system in the neighbourhood of this singularity, we give a simple model for degenerated singularity that we prove by a theorem which establishes a unique symplectomorphisme between the degenerate singularity and the model of geodesic flows on the sphere S3
Cecile, Mario Guillaume. "Exploring quantum dynamics : from hydrodynamics to measurement induced phase transition". Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1298.
Texto completo da fonteIn this thesis, we take a deep dive into the world of quantum dynamics, aiming to understand the complex behaviours that arise in quantum many-body systems and the emergence of hydrodynamics behaviour. Throughout the chapters, we simplify key concepts essential for understanding how quantum systems operate. Chapter 1 presents an overview of fundamental concepts on emergent phenomena in quantum integrable systems and generalized hydrodynamics, which is essential to understand the complexities of quantum dynamics. Additionally, we offer an in-depth introduction to Matrix Product States, which are a valuable tool for efficiently simulating quantum dynamics in 1D systems. In Chapter 2, we develop a model to describe the relaxation of spin helices using the framework of generalized hydrodynamics with diffusive corrections and a modified version of the local density approximation. Our analysis demonstrates that this hydrodynamic framework accurately reproduces the experimentally observed relaxation dynamics. Additionally, it predicts the long-term relaxation behaviour, which lies beyond the experimentally accessible time scales. Our theoretical framework elucidates the occurrence of temporal regimes exhibiting seemingly anomalous diffusion and highlights the asymmetry between positive and negative anisotropy regimes at short and intermediate time intervals. Chapter 3 delves into the intriguing phenomena observed in the easy-axis regime |Δ| ≥ 1, where initial states with zero magnetic fluctuations instead locally relax to an exotic equilibrium states that we will refer to as squeezed generalized Gibbs ensemble. At the isotropic point, interestingly, we found an unusual behaviour which explicitly depend on the initial state. Namely, for the Néel state, we found extensive fluctuations and a super-diffusive dynamical exponent compatible with Kardar-Parisi-Zhang universality. For another non-fluctuating initial state, e.g., product state of spin singlets, we instead found diffusive scaling. In Chapter 4, we investigate the time evolution of an extended quantum spin chains under continuous monitoring using matrix product states with a fixed bond dimension, employing the Time-Dependent Variational Principle algorithm. This algorithm yields an effective classical nonlinear evolution with a conserved charge, offering an approximation to the true quantum evolution with some error. We find that the error rate exhibits a phase transition as the strength of the monitoring varies, and this transition can be accurately identified through scaling analysis with relatively small bond dimensions. Our approach enables efficient numerical determination of critical parameters associated with measurement-induced phase transitions in many-body quantum systems. Furthermore, in the presence of U(1) global spin charge, we observe a distinct charge-sharpening transition, which occurs independently of the entanglement transition. This transition is identified by analysing the charge fluctuations within a local subset of the system over extended time periods. Our findings highlight the effectiveness of TDVP time evolution as a means to detect measurement-induced phase transitions in systems of varying dimensions and sizes.Finally, the last chapter provides a conclusive summary of the findings and discusses potential avenues for future research
Cresson, Jacky. "Propriétés d'instabilité des systèmes Hamiltoniens proches de systèmes intégrables". Observatoire de Paris, 1997. https://hal.archives-ouvertes.fr/tel-02071388.
Texto completo da fonteThe purpose of this thesis is to study instability properties of near-integrable Hamiltoniens systems, in particular Arnold’s diffusion. We first describe the phase-space near a partially hyperbolic torus and along a transition chain. We prove that hyperbolic tori, which come from the destruction of resonant tori, are transition tori. We then show that transvers homoclinic partially hyperbolic tori possess a symbolic dynamics. These results allow us to prove the existence of instability’s orbits along a chain as well as periodic orbits of arbitrarily hight period as conjectured by Homes-Marsden. Second, we estimate the time of drift along a chain by geometrical methods. We precise the role of the splitting size, ergodisation time… We prove that for initially hyperbolic Hamiltonian systems this time of drift is polynomial. Our method is general and applies on abstract chain of tori, which is not the case of variational methods. Last, we apply our result on specific examples. We first describe a class of systems, which always possess transition chain. We then show that this class contains a lot of classical systems as the three body problem, Rydberg’s atom…
Leurent, Sebastien. "Systèmes intégrables et dualité AdS/CFT". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2012. http://tel.archives-ouvertes.fr/tel-00797842.
Texto completo da fonteLeurent, Sébastien. "Systèmes intégrables et dualité AdS/CFT". Paris 6, 2012. http://www.theses.fr/2012PA066238.
Texto completo da fonteThis thesis is devoted to the study of integrable quantum systems such as spin chains, bidimentional field theories and the AdS/CFT duality. This AdS/CFT duality is a conjecture, stated in the end of the last century, which relates (for instance) the non-perturbative regime of a superconformal gauge theory (called N=4 super Yang-Mills) and the perturbative regime of a string theory on a 10-dimensioonal space with the geometry AdS₅xS⁵. This thesis explores the similarities between integrable spin chains and quantum field theories, such as Super Yang Mills. We first study integrable spin chains and build explicitely a polynomial "Bäcklund flow" and polynomial "Q-operators", which allow to diagonalize the Hamiltonian. We then study integrable field theories et show how to obtain "Q-functions", analogous to the Q-operators built for spin chains. It turns out that several important informations are contained in the analytic properties of these Q-functions. That allows to obtain, in the framework of the thermodynamic Bethe Ansatz, a finite number of non-linear integral equations encoding the spectrum of the theory which we study. This system of equations is equivalent to an infinite system of equations, known as "Y-system", which had been quite recently conjectured in the case of the AdS/CFT duality
Crampé, Nicolas. "Approches algébriques dans les systèmes intégrables". Chambéry, 2004. http://www.theses.fr/2004CHAMA001.
Texto completo da fonteThe aim of this thesis is mainly the study of quantum integrable systems. In particular, algebraic methods are developped in order to study the symmetries of quantum models. The thesis is made out of two parts. In this first part, mathematical tools used in the study of integrable systems are presented. We shall define quantum groups and in particular Yangians. These algebras are the cause of recent developments in mathematics and physics. Their Hopf structure which is essential for the understanding of integrable systems will be discussed. These algebraic concepts will be generalized to any Lie algebra and superalgebra and finally, we will focus on the subalgebras of the Yangians. The second part uses these concepts to study quantum integrable systems, namely the so-called Sutherland model and spin chains. An important part of this part will be devoted to the study of these integrable systems in the presence of non-trivial boundary conditions
Ranty, François. "Systèmes hamiltoniens convexes présentant une intégrale première non triviale". Paris 9, 1987. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1987PA090018.
Texto completo da fonteBaseilhac, Pascal. "Approche à la Onsager en systèmes intégrables". Habilitation à diriger des recherches, Université François Rabelais - Tours, 2010. http://tel.archives-ouvertes.fr/tel-00612887.
Texto completo da fonteToulet, Anne. "Classifications des systèmes intégrables en dimension 2". Montpellier 2, 1996. http://www.theses.fr/1996MON20113.
Texto completo da fonteNagy, Zoltan. "Systèmes intégrables et algèbres de réflexion dynamiques". Cergy-Pontoise, 2005. http://biblioweb.u-cergy.fr/theses/05CERG0270.pdf.
Texto completo da fonteThis thesis is a contribution to the study of different dynamical quadratic algebras and their applications to integrable systems. Dynamical quadratic algebras are generalizations of the reflection algebra introduced by Cherednik to deal with integrable systems on the half-line, and more generally with integrable systems with open boundary conditions. We define two dynamical quadratic algebras : fully dynamical and semi-dynamical. The former is a simple generalization of the boundary elliptic quantum group, the latter is a new structure. We show in both cases how to build families of commuting Hamiltonians as quantum analogues of the trace of powers of the classical Lax-matrix. We also show, making use of the comodule structure which we elucidate, how to construct spin chain type Hamiltonians using the representations of these algebras as building blocks. These results are self-contained in the sense that they make no use of the vertex-IRF correspondence linking dynamical and non-dynamical algebras
Tseitline, Vadim. "Systèmes intégrables en mécanique classique et quantique". Paris 7, 2002. http://www.theses.fr/2002PA077188.
Texto completo da fonteBouloc, Damien. "Géométrie et topologie de systèmes dynamiques intégrables". Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30099/document.
Texto completo da fonteIn this thesis, we are interested in two different aspects of integrable dynamical systems. The first part is devoted to the study of three families of integrable Hamiltonian systems: the systems of bending flows of Kapovich and Millson on the moduli spaces of 3D polygons with fixed side lengths, the Gelfand-Cetlin systems introduced by Guillemin and Sternberg on the coadjoint orbits of the Lie group U(n), and a family of integrable systems defined by Nohara and Ueda on the Grassmannian Gr(2,n). In each case we prove that the fibers of the momentum map are embedded submanifolds for which we give geometric models in terms of quotients manifolds. In the second part we carry on with a study initiated by Zung and Minh of the totally hyperbolic actions of R^n on compact n-dimensional manifolds that appear naturally when investigating integrable non-hamiltonian systems with nondegenerate singularities. We study the flow generated by the action of a generic vector in Rn. We define a notion of index for its singularities and we use this flow to obtain results on the number of orbits of given dimension. We investigate further the 2-dimensional case, and more particularly the case of the sphere S2, where the orbits of the action draw an embedded graph of which we analyse the combinatorics. Finally, we provide explicit examples of totally hyperbolic actions in dimension 3, on the sphere S3 and on the projective space RP3
Jiang, Kai. "Normalisation C-infini des systèmes complètement intégrables". Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC298/document.
Texto completo da fonteThis thesis is devoted to the local geometric linearization of completely integrable systems in the C1 category. The subject is the geometric linearization conjecture proposed (and proved in the analytic case) by Nguyen Tien Zung. We start from linear systems and introduce normalization in the formal category. Wes how that an integrable system can be decomposed into a hyperbolic part and an elliptic part. We establish a good Poincaré-Dulac normal form for the vector fields and discuss its relation with geometric linearization. We prove that weakly hyperbolic integrable systems are geometrically linearizable byusing Chaperon’s tools. We then study integrable systems on small dimensional spaces: if the dimension is no more than 4, then most cases are geometrically linearizable; in particular,geometric linearization works for integrable system of focus-focus type. Finally, we generalize the proof to high dimensions and propose a condition about strongly invariant manifolds, under which we linearize the systems in the geometric sense. We also manage to normalize an R × T-action of several focuses by referring to the ideas of Zung
Bounemoura, Abed. "Stabilité et instabilité des systèmes hamiltoniens presque-intégrables". Paris 11, 2010. http://www.theses.fr/2010PA112101.
Texto completo da fonteThis thesis is devoted to various questions concerning the stability and instability of near-integrable Hamiltonian systems. In a first part, we give an informal introduction to Hamiltonian systems and to the perturbation theory of integrable Hamiltonian systems in the first chapter, and then, in the second chapter, we state our results. A second part is devoted to stability results. In the third chapter, we give a new proof of the exponential stability theorem of Nekhoroshev in the generic case for an analytic system. Our method uses only composition of periodic averaging, and therefore it avoids the small divisors problem. Then, in the fourth chapter, we take advantage of this approach to obtain new results of exponential and super-exponential stability in the neighbourhood of elliptic fixed points, invariant Lagrangian quasi-periodic tori and more generally invariant linearly stable quasi-periodic tori, which are isotropic and reducible. In the fifth chapter, for a quasi-convex integrable Hamiltonian system, we also prove a result of polynomial stability in the case where the system is only finitely differentiable. A third part lies between stability and instability. In the sixth chapter, for a quasi-convex system which is analytic or Gevrey, we improve the stability exponent by studying the geometry of simple resonances. Thus we obtain a time of stability which is closer to the known instability times, and which is certainly optimal. In the fourth part, we will construct examples of unstable Hamiltonian systems. First, in the seventh chapter, we give a new example of an \textit{a priori} unstable system which has a drifting orbit with an optimal time of instability. Our method uses the symbolic dynamics created by the transverse intersection between the stable and unstable manifolds of a normally hyperbolic invariant manifold. In the eighth and last chapter, we also construct an example of a near-integrable Hamiltonian system, for which the size of the perturbation goes to zero only when the number of degrees of freedom goes to infinity, and which has an orbit drifting in a polynomial time. In particular, this gives a new constraint on the threshold of validity for exponential stability results
Rachidi, Mustapha. "Contribution à l'étude algébrique de quelques systèmes intégrables". Lyon 1, 1992. http://www.theses.fr/1992LYO10004.
Texto completo da fonteNguyen, Vu-Lan. "Polymères dirigés en milieu aléatoire : systèmes intégrables, ordres stochastiques". Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC097.
Texto completo da fonteThe thesis focuses on (mostly 1 + 1 dimensional) directed polymers in random media. These are classical and celebrated models in the statistical mechanics of disordered systems and describe a one dimensional interface interacting with a d + 1-dimensional random environment where it is immersed. A very important question is to understand, in the limit where the polymer's length tends to infinity and for a typical realization of the environment, the geometric properties of the polymer: typical transversal displacement of the endpoint and its fluctuations, polymer localization at strong disorder around typical tubes determined by disorder. . . A strictly related problem of great interest is to study the fluctuations of the free energy. The main focus is on the so-called log-gamma polymer. This model, introduced by Seppalainen, is obtained by making a specific choice for the disorder law: the random variables are inverse Gamma variables. For this specific disorder choice, he proved that the variance of the log of the partition function is of order N"2/3, as expected by KPZ theory. This was refined into a full limit theorem Tracy -Widom type fluctuations) by Corwin, O'Connell, Seppalainen and Zygouras, via an explicit formula for the Laplace transform of a single partition function. It was until now an open problem to compute correlations between partition functions with different end-points and to study the asymptotic distribution of the polymer's endpoint. The present thesis addresses, among others, these two very challenging problems. On the other hand, we consider applications of stochastic orders on the study of directed polymer and disordered systems
Dargis, Pierre. "Structures non-locales dans les systèmes intégrables, systèmes KdV supersymétriques et chaînes de spins". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0005/NQ39345.pdf.
Texto completo da fonteKhemar, Idrisse. "Systèmes intégrables intervenant en géométrie différentielle et en physique mathématique". Phd thesis, Université Paris-Diderot - Paris VII, 2006. http://tel.archives-ouvertes.fr/tel-00277998.
Texto completo da fonteAbarenkova, Nina. "Etudes de systèmes intégrables ou de complexes faibles, en physique du solide et systèmes dynamiques discrets". Université Joseph Fourier (Grenoble), 1999. http://www.theses.fr/1999GRE10068.
Texto completo da fonteMazzanti, Liuba. "Systèmes intégrables non commutatifs et la correspondance Ads/CFT en cosmologie". Phd thesis, Ecole Polytechnique X, 2007. http://pastel.archives-ouvertes.fr/pastel-00003164.
Texto completo da fonteColome-Tatche, Maria. "Effets de taille finie et dynamique dans les systèmes intégrables unidimensionnels". Phd thesis, Université Paris Sud - Paris XI, 2008. http://tel.archives-ouvertes.fr/tel-00414689.
Texto completo da fonteJe me suis intéressée à l'étude de quelques aspects des systèmes intégrables à 1D. D'abord je présente une étude de l'état fondamental d'un système de fermions 1D à 2 composants en interactions de contact répulsives. J'utilise l'ansatz de Bethe pour calculer le diagramme de phase du système homogène. Je prends ensuite en compte un piège harmonique et je montre que les atomes s'organisent en deux couches: une phase partiellement polarisée se trouve au centre du piège et une phase totalement polarisée aux bords.
Ensuite j'étudie des corrections dues aux effets de taille finie au gap du spectre d'excitations du modèle d'Hubbard 1D. J'obtiens deux termes correctifs aux résultats de la limite thermodynamique: un en loi de puissances inverses en la taille du système L, et un second exponentiel en L. Dans le régime de faible interaction ce deuxième terme peut être important.
Finalement j'étudie la réponse d'un système excité à la modulation temporelle de l'interaction entre atomes. Je considère le modèle de Lieb-Liniger et le modèle non-intégrable d'un gaz de fermions avec une impureté mobile. Je montre que le système non-intégrable est sensible à des excitations de fréquences de l'ordre de l'espacement moyen entre niveaux d'énergie, tandis que le système intégrable n'est excité que par des fréquences beaucoup plus grandes. Cet effet peut être utilisé comme test d'intégrabilité dans des systèmes mésoscopiques 1D et pourrait être observé expérimentalement.
Caudrelier, Vincent. "Equation de Schrödinger non-linéaire et impuretés dans les systèmes intégrables". Phd thesis, Chambéry, 2005. http://tel.archives-ouvertes.fr/tel-00009612.
Texto completo da fonteDans ce contexte, l'équation de Schrödinger non-linéaire (à 1+1 dimensions) est un système privilégié. On la retrouve comme modèle de phénomènes variés tant classiques (optique non-linéaire, mécanique des fluides...) que quantiques (gaz ultra-froids, condensation de Bose-Einstein...). En outre, elle a contribué à la mise au point de techniques de résolution des systèmes intégrables : méthode de diffusion inverse, ansatz de Bethe, identification et utilisation de symétries (groupes quantiques, Yangiens). En utilisant ce système à la fois comme support de test et comme modèle de prédiction, mon travail de thèse tourne autour de deux points principaux :
- Inclusion de degrés de liberté bosoniques et fermioniques.
- Inclusion d'un bord ou d'une impureté.
Dans un premier temps, j'ai étudié une version « supersymétrique » de cette équation pour laquelle j'ai montré la validité de tous les résultats d'intégrabilité, de symétrie et de résolution explicite classiques et quantiques connus pour la version scalaire originelle. La question de l'inclusion d'un bord a été traitée d'un autre point de vue. L'idée est de partir d'une algèbre de symétrie caractéristique des systèmes intégrables avec bord, l'algèbre de réflexion, et de construire un Hamiltonien général intégrable et possédant cette algèbre comme structure de symétrie. Un cas particulier de l'Hamiltonien intégrable obtenu n'est autre que l'Hamiltonien de Schrödinger non-linéaire en présence d'un bord. Un autre cas particulier est l'Hamiltonien de Sutherland en présence d'un bord pour lequel la symétrie n'était pas connue.
Le problème de l'inclusion d'une impureté dans un système intégrable a constitué la plus grosse partie de mon travail. J'ai pu montrer qu'il est possible de préserver l'intégrabilité d'un système avec interaction lorsqu'on introduit un défaut qui transmet et réfléchit (une impureté) grâce à une nouvelle structure algébrique, l'algèbre de Réflexion-Transmission, appliquée à l'équation de Schrödinger non-linéaire. Cela permet de trouver la forme explicite du champ, de calculer de façon exacte les éléments de la matrice de diffusion et les fonctions de corrélation à N points et d'identifier la symétrie du problème.
Suite à ce travail, les équations exactes qui régissent le spectre d'énergie d'un gaz de particules en interaction de contact et en présence d'une impureté contrôlée par quatre paramètres ont été établies. Ces résultats ouvrent des perspectives d'applications en physique de la matière condensée.
Colomé, Tatché Maria. "Effets de taille finie et dynamique dans les systèmes intégrables unidimensionnels". Paris 11, 2008. http://www.theses.fr/2008PA112325.
Texto completo da fonteMany physical systems can be described by one-dimensional (1D) models. It is the case of ultra-cold atoms: under certain circumstances their dynamics occurs only in one dimension. During my PhD I studied some aspects of 1D integrable systems. First, I present a study on the ground state of a system of 2-component repulsive fermions in 1D under harmonic confinement. I use the Bethe ansatz solution to calculate the phase diagram of the system in the homogeneous case. Adding a harmonic confinement I show that the atoms are distributed in a two-shell structure: the partially polarised phase in the inner shell and the fully polarised phase at the edges of the trap. Next I study the finite size effects for the gap of the quasiparticle excitation spectrum in the 1D Hubbard model. Two type of corrections to the result of the thermodynamic limit are obtained: a power law correction inversely proportional to the size of the system L, due to gapless excitations, and an exponential correction on L related to the existence of gapped excitations. In the weakly interacting regime this last correction can become important. Finally I study the response of a highly excited 1D gas to a periodic modulation of the coupling constant. I consider the Lieb-Liniger model and the non-integrable model of a single mobile impurity in a Fermi gas. I show that the non-integrable system is sensitive to excitations with frequencies as low as the mean level spacing, whereas the threshold frequency in the integrable case is much larger. This effect can be used as a probe of integrability for mesoscopic 1D systems, and can be observed experimentally by measuring the heating rate of a parametrically excited gas
Roy, Nicolas. "Sur les déformations des systèmes complètement intégrables classiques et semi-classiques". Université Joseph Fourier (Grenoble), 2003. https://tel.archives-ouvertes.fr/tel-00003400.
Texto completo da fonteVũ, Ngoc San. "Sur le spectre des systèmes complètement intégrables semi-classiques avec singularités". Université Joseph Fourier (Grenoble ; 1971-2015), 1998. http://www.theses.fr/1998GRE10270.
Texto completo da fonteLablée, Olivier. "Autour de la dynamique semi-classique de certains systèmes complètement intégrables". Phd thesis, Grenoble 1, 2009. http://www.theses.fr/2009GRE10305.
Texto completo da fonteThe semi-classical dynamics of a pseudo-differential operator on a manifold is the quantum analogous of the classical flow of his main symbol on the manifold. This semi-classical dynamics is described by the Schrödinger equation of the operator whereas the classical Hamiltonian flow is given by the Hamilton's equations associated with the function. Thus the spectrum of the pseudo-differential operator enable to describe the general solutions of the associated Schrödinger equation. The long time behavior of these solutions remains in many ways mysterious. The semi-classical dynamics depends directly on the spectrum of the operator and consequently also on the underlying geometry into induced by the classical symbol. In this thesis, we first describe the long time semi-classical dynamics of an Hamiltonian in the one-dimensional case with a symbol function with no singularity or with non-degenerate elliptic singularity type : the associated fibers are closed elliptic orbits. The regular Bohr-Sommerfeld rules supply the spectrum of the operator. We are also interested in the elliptic case of the dimension 2 which leads to some discussion of numbers theory. Finally we consider the case of a one-dimensionnal pseudo-differential operator with a non-degenerate hyperbolic singularity : the singular fiber of in is a “ hyperbolic eight ” (this model is diffeomorphic to the Schrödinger operator with a double wells)
Lablée, Olivier. "Autour de la dynamique semi-classique de certains systèmes complètement intégrables". Phd thesis, Université Joseph Fourier (Grenoble), 2009. http://tel.archives-ouvertes.fr/tel-00439641.
Texto completo da fonteLabrousse, Clémence. "Compléxité des flots géodésiques intégrables sur le tore". Paris 6, 2012. http://www.theses.fr/2012PA066229.
Texto completo da fonteRigal, Marie-Hélène. "Géométrie globale des systèmes bihamiltoniens en dimension impaire". Montpellier 2, 1996. http://www.theses.fr/1996MON20003.
Texto completo da fonteGaillard, Pierre. "Déformations intégrables des potentiels de Darboux-Pöschl-Teller". Dijon, 2004. http://www.theses.fr/2004DIJOS006.
Texto completo da fontePiu, Maria Paola. "Sur certains types de distributions non-intégrables totalement géodésiques". Mulhouse, 1988. http://www.theses.fr/1988MULH0085.
Texto completo da fonteCohen-Aptel, Véronique. "Fonctions double Gamma liées aux systèmes de racines". Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1558/.
Texto completo da fonteThis thesis, consisting of 11 chapters, is divided into three parts and addresses the double Gamma functions associated with root systems. The first part includes the classical theorems on the Euler G function ; added are results, specifically developed for this work, which will be used in the other two parts. According a similar pattern (functional equation, integral formulas, limiting values) the double Gamma function and the q-Gamma function are also studied. The second part describes the Double Gamma versions in physics : the Gammab function, double sine Sb function, the gamma function of the brothers Zamolodchikov, the Lukyanov-Zamolodchikov and Fateev functions related to Cartan matrices, are studied. A part of these results, expressed by the physicists, is demonstrated. The last part deals with Fateev formulas and gives proof of the Fateev theorem by direct calculation, for systems of type A, D, E, B, C, F, G, using only the classical formula of the product of Gamma. Chapter 9 gives a q-analogue theorem of the Fateev formula for the systems of type A, B, C, D, G2. Chapter 10 allows us to express some eigenvectors of the Cartan matrix in terms of products of values of the G function. Finite and affine cases are demonstrated
Martinez, Patrick. "Stabilisation de systèmes distribués semilinéaires : domaines presque étoilés et inégalités intégrales généralisées". Université Louis Pasteur (Strasbourg) (1971-2008), 1998. http://www.theses.fr/1998STR13191.
Texto completo da fonteBolle, Philippe. "Etude des solutions périodiques de certains systèmes hamiltoniens : systèmes ayant des intégrales premières non triviales. Problème du billard". Paris 9, 1994. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1994PA090003.
Texto completo da fonteSobrero, Alessandra. "Systèmes de Toda multidiagonaux et opérateurs de Toeplitz". Paris 7, 2005. http://www.theses.fr/2005PA077167.
Texto completo da fonteRuiz-Sanchez, Francisco José. "Stabilité de systèmes bouclés par des contrôleurs flous du type Proportionnel-Dérivé et Proportionnel-Intégral". Compiègne, 1997. http://www.theses.fr/1997COMP1087.
Texto completo da fonteVu, Thi Thao. "Les relations de q-Dolan-Grady d'ordre supérieur et certains systèmes intégrales quantiques". Thesis, Tours, 2015. http://www.theses.fr/2015TOUR4027/document.
Texto completo da fonteIn this thesis, the connection between recently introduced algebraic structures (tridiagonal algebra, q-Onsager algebra, generalized q-Onsager algebras), related representation theory (tridiagonal pair, Leonard pair, orthogonal polynomials), some properties of these algebras and the analysis of related quantum integrable models on the lattice (the XXZ open spin chain at roots of unity) is considered
Boudaoud, Abdelmadjid. "Modélisation de phénomènes discrets et approximations diophantiennes infinitésimales". Mulhouse, 1988. http://www.theses.fr/1988MULH0087.
Texto completo da fonteLiorit, Grégory. "Etude des valeurs propres de quelques processus matriciels à l'aide d'une méthode de Laplace pour des intégrales stochastiques itérées et de la formule de Campbell-Hausdorff stochastique". Poitiers, 2005. http://www.theses.fr/2005POIT2329.
Texto completo da fonteBarraquand, Guillaume. "Quelques modèles intégrables dans la classe d'universalité KPZ". Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC242.
Texto completo da fonteThis thesis is about exactly solvable stochastic models in the KPZ universality class. The first chapter provides an overview of the recent methods designed to study such systems. We also present the different works which constitute this thesis, leaving aside the technical details, but rather focusing on the interpretation of the results and the general methods that we use. The three next chapters each correspond to an article published or submitted for publication. The first chapter is an asymptotic study of the q-TASEP interacting particle system, when the system is perturbed by a few slower particles. We show that the system obeys to the same limit theorem as TASEP, and one observes the so-called BBP transition. The second chapter, based on a work in collaboration with Ivan Corwin, introduces new exactly solvable exclusion processes. We verify the predictions from KPZ scaling theory, and we also study the less universal behaviour of the first particle. The third chapter corresponds to a second work in collaboration with Ivan Corwin. We introduce a random walk in random environment, which turns out to be exactly solvable. We prove that the second order correction to the large deviation principle is Tracy-Widom distributed on a cube root scale. We give a probabilistic interpretation of this limit theorem, and show that the result also propagates at zero-temperature
Fortin, Frédéric. "Etude de structures couplées adaptées aux composants hyperfréquences intégrables". Chambéry, 2000. http://www.theses.fr/2000CHAMS027.
Texto completo da fonteShenderovich, Igor. "Structures intégrables dans les théories de jauge et les théories des cordes supersymmétriques". Paris 6, 2012. http://www.theses.fr/2012PA066465.
Texto completo da fonteIn this thesis is given a review of the methods of integrability in the context of the AdS/CFT correspondence. We investigate integrable structures on both sides of the AdS/CFT duality using different methods. On the string side of the duality we observe how the supersymmetry and automorphism of the symmetry group organize the model into integrable one. Then, using the consequences of the finite gap method for the integrable system we perform a one--loop quantization procedure which allows us to compute the one--loop spectrum of the model. We illustrate this method by computing the spectrum of a short string. On the gauge side we review the method of the functional Y--system equations for computing the spectrum of the theory in the finite volume. Due to the existence of the two--particle S--matrix it is possible to use the Zamolodchikov's trick to setup a system of functional equations, which can be later recast as a Hirota equation defined on some domain. In the strong coupling limit these equations can be drastically simplified. This gives us a chance to have an analytic solution of them, which can be compared to the string side computation. These two results are in a perfect agreement
Fittouhi, Yasmine. "Étude des fibres singulières des systèmes de Mumford impairs et pairs". Thesis, Poitiers, 2017. http://www.theses.fr/2017POIT2252/document.
Texto completo da fonteThis thesis is dedicated to the study and to the description of the fibres of the momentum map of the (even or odd) Mumford system of degree g>0. These fibres are parameterized by hyperelliptic curves. Mumford proved that each fiber over a smooth curve is isomorphic to the Jacobian of the curve, minus its theta divisor. We give a geometrical as well as an algebraic description of the fibers over any singular curve. The geometrical description uses in an essential way the g vector field of the Mumford system. They define a stratification of each fiber where each stratum is isomorphic to a particular stratum, called the maximal stratum, of a fiber of a Mumford system of degree at most g. The algebraic description uses the theory of subresultants, which is applied to the polynomials which parametrize the points of phase space. We show that every stratum is isomorphic with an affine part of the generalized Jacobian of a singular hyperelliptic curve. We also prove that the Mumford vector fields are translation invariant on these generalized Jacobians