Literatura científica selecionada sobre o tema "Système nerveux sympathique autonome"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Système nerveux sympathique autonome".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Système nerveux sympathique autonome"
Dolfus, S. "La cohérence cardiaque : définition, intérêts et applications en psychiatrie". European Psychiatry 28, S2 (novembro de 2013): 13. http://dx.doi.org/10.1016/j.eurpsy.2013.09.031.
Texto completo da fonteCourcelles, L., T. Roy, Jean-François Vanderijst, A. Hanot, J. C. Degols, C. Lamontagne e Stéphane Jaumier. "Anomalie des métanéphrines urinaires, surdité et paralysie du nerf XII : un cas de paragangliome". Revue de biologie médicale 358, n.º 1 (1 de fevereiro de 2021): 19–25. https://doi.org/10.3917/rbm.358.0019.
Texto completo da fonteMoalla, Mounia. "La Yoga Thérapie dans la prise en charge du syndrome de Stress Post Traumatique (SSPT)". Hegel N° 4, n.º 4 (18 de janeiro de 2024): 259–63. http://dx.doi.org/10.3917/heg.134.0259.
Texto completo da fonteSerratrice, G., e A. Verschueren. "Système nerveux autonome". EMC - Neurologie 2, n.º 1 (janeiro de 2005): 1–18. http://dx.doi.org/10.1016/s0246-0378(05)39084-1.
Texto completo da fonteSerratrice, J., A. Verschueren e G. Serratrice. "Système nerveux autonome". EMC - Neurologie 10, n.º 1 (janeiro de 2013): 1–18. http://dx.doi.org/10.1016/s0246-0378(12)60767-2.
Texto completo da fonteSerratrice, G., e A. Verschueren. "Système nerveux autonome". EMC - Neurologie 2, n.º 1 (fevereiro de 2005): 55–80. http://dx.doi.org/10.1016/j.emcn.2004.08.003.
Texto completo da fonteSerratrice, G., F. Billé Turc e J. Serratrice. "Système nerveux autonome". EMC - Neurologie 18, n.º 1 (1995): 1. https://doi.org/10.1016/s0246-0378(19)30433-6.
Texto completo da fonteMagnon, Claire. "Le système nerveux autonome". médecine/sciences 29, n.º 8-9 (agosto de 2013): 699–701. http://dx.doi.org/10.1051/medsci/2013298007.
Texto completo da fonteLafontan, Max. "Obésité humaine et système nerveux sympathique". Oléagineux, Corps gras, Lipides 10, n.º 2 (março de 2003): 124–30. http://dx.doi.org/10.1051/ocl.2003.0124.
Texto completo da fonteChenu, Chantal, e Massimo Marenzana. "Système nerveux sympathique et remodelage osseux". Revue du Rhumatisme 72, n.º 10-11 (outubro de 2005): 894–97. http://dx.doi.org/10.1016/j.rhum.2005.09.005.
Texto completo da fonteTeses / dissertações sobre o assunto "Système nerveux sympathique autonome"
Ollivier, Maëlle. "Implication du système nerveux autonome sympathique dans la sclérose latérale amyotrophique". Electronic Thesis or Diss., Bordeaux, 2025. http://www.theses.fr/2025BORD0022.
Texto completo da fonteAmyotrophic lateral sclerosis (ALS) was initially defined by Jean-Martin Charcot in 1869 as a disease exclusively affecting motor neurons. It is now recognized as a multisystem neurodegenerative disease with clinical, genetic, and neuropathological heterogeneity. Despite significant progress in understanding Charcot's disease, few treatments are currently available to slow or halt its progression. Although various symptoms related to autonomic nervous system (ANS) dysfunctions have been described, few research projects have explored its role in the development of ALS. The work presented in this thesis aimed to study alterations in the sympathetic autonomic nervous system in ALS, using the SOD1G93A mouse model. We specifically focused on the sympathetic preganglionic neurons (SPNs) of the ANS, which share numerous molecular and functional characteristics with motor neurons. SPNs represent the final spinal relay of autonomic control. By combining genetic, biochemical, anatomical techniques with telemetry and behavioral approaches, we demonstrated that alterations in the ANS are present in SOD1 mice at presymptomatic stages of the disease
Mansour, Christelle. "Évaluation des altérations microcirculatoires et de la balance sympatho-vagale en situation critique : intérêt de modulateurs du système nerveux sympathique". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1302.
Texto completo da fonteAmong the factors involved in the regulation and maintenance of the organs’ functioning, the autonomic nervous system and the microcirculation play a preponderant role. In critical patients, such as septic patients, alterations in the sympathovagal balance and tissue perfusion may occur and have major consequences of morbidity and mortality. The implementation of early detection methods for these disturbances could therefore contribute to improve the survival of patients at risk. Indeed, the monitoring of hemodynamic parameters, as conventionally performed during resuscitation, may be insufficient to detect tissue perfusion alterations: during sepsis, microcirculatory changes may persist despite the normalization of macrocirculatory parameters and are associated with a bad prognosis. With regard to the presence of microcirculatory dysfunctions and autonomic nervous system alterations in critical patients, this research project proposed to evaluate the impact of modulators of the sympathetic system on the sympatho-vagal balance and microcirculation. In order to achieve this, we worked on animal models and animals admitted to the faculty’s veterinary hospital center. Monitoring of the autonomic nervous system was based on a new Parasympathetic Tone Activity (PTA) index. In parallel, the microcirculation was evaluated by videomicroscopy (SDF, Sidestream Dark Field imaging). The PTA index demonstrated a good performance in predicting hemodynamic reactions in anesthetized dogs. It also detected disturbances of the sympathetic balance in horses admitted for colic surgery as well as an alteration of microcirculation despite resuscitation maneuvers. Preclinical studies on the impact of esmolol and dexmedetomidine infusion in a septic swine model showed that, despite their potential hemodynamic effects, these agents did not have a negative effect on the microcirculation. Thus, these findings suggest a beneficial effect of the modulators of the sympathetic nervous system on the microcicultion, however, these resutls should be confirmed on a larger scale
Espinosa, Medina Isabel. "On the development of the parasympathetic, enteric and sacral nervous systems". Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066009/document.
Texto completo da fonteNeural crest cells migrate extensively to form the autonomic nervous system including sympathetic, parasympathetic and enteric ganglia essential for regulating bodily homeostasis. In the present work, I explore the migratory mechanisms and neuronal interactions during autonomic circuit assembly, as well as their molecular dependencies. I show that parasympathetic ganglia derive from Schwann cell precursors (SCPs) and migrate along their preganglionic nerves to locate close to their target tissues (Espinosa-Medina et al., 2014). In line with this work, I show that vagal-associated SCPs give rise to part of the oesophageal nervous system, whereas cervical sympathetic-like crest cells colonize all the gastrointestinal tract, demonstrating a dual origin and different migration mechanisms for enteric neurons. Finally, I revise the identity of the sacral autonomic outflow, whose allocation to the parasympathetic nervous system has been accepted for a century. Sacral autonomic neurons control rectal, bladder, and genital functions and analysis of their cellular phenotype was lacking. Here I present a differential molecular signature for cranial parasympathetic versus thoraco-lumbar sympathetic neurons and show that, in this light, the sacral autonomic outflow is sympathetic. Accordingly, the parasympathetic nervous system receives input from cranial nerves exclusively and the sympathetic nervous system from spinal nerves, thoracic to sacral inclusively (Espinosa-Medina et al., 2016). Interestingly the enteric nervous system, which receives input from both sympathetic and parasympathetic nerves, shares with each system aspects of its ontogeny
Allio, Gabrielle. "Laignel-Lavastine (1875-1953) : un psychiatre "sympathique"". Caen, 1993. http://www.theses.fr/1993CAEN3094.
Texto completo da fonteDamase-Michel, Christine. "Système nerveux orthosympathique et mécanisme d'action des médicaments antihypertenseurs". Toulouse 3, 1991. http://www.theses.fr/1991TOU30279.
Texto completo da fonteGaudinière, Valence Dorothée. "La Réactivité émotionnelle chez la caille : approches comportementales, cardiaque et génétique". Tours, 2006. http://www.theses.fr/2006TOUR4029.
Texto completo da fonteThe aim was to study the influence of the emotional reactivity on behavioural and cardiac responses in birds during emotional situations. Behavioural and heart rate variability measurements were studied in quail selected on either a long (LTI) or a short (STI) tonic immobility duration. STI and LTI quail exhibit low and high emotional reactivity. In 2 emotional situations, sympathetic activity increased in all lines, however, parasympathetic activity decreased in STI and LTI during an object presentation while it increased in STI after an acoustic stimulation. Emotional reactivity and the test situation then influence autonomic and behavioural responses during emotional situation. Finally, the study of the emotional responses could help the evaluation of animal welfare in rearing conditions
Aubertin-Kirch, Gaëlle. "Rôle de l'hyperactivité sympathique dans la physiopathologie du syndrome métabolique". Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAJ031/document.
Texto completo da fonteSeveral studies have established an association between cardiometabolic disorders composing the metabolic syndrome and sympathetic hyperactivity. The causal relationship is however not clearly defined. Our work on a murine model of constitutive sympathetic hyperactivity (partial and / or complete deletion of the norepinephrine reuptake transporter) highlights its role in the development of carbohydrate disorders: 1) An increase in the sympathetic activity is a sufficient factor for early carbohydrate disorders associating glucose intolerance with basal hyperinsulinemia without hyperglycemia. 2) These disorder are thought to be due to a delay in insulin secretion in response to glucose stimulation, probably consecutive to a decreased expression of the GLUT2 transporter. These results show that chronic sympathetic hyperactivity may constitute a prognostic factor allowing the early diagnosis of patients at risk to develop glucose homeostasis disorders and opens perspectives in the treatment of type 2 diabetes mellitus
Quilliot, Didier. "Résistance à l'action des catécholamines, de la leptine et de l'insuline au cours de l'obésité : étude de la réactivité du système nerveux autonome "in vivo" et de la lipolyse "in vitro"". Nancy 1, 2002. http://docnum.univ-lorraine.fr/public/SCD_T_2002_0252_QUILLIOT.pdf.
Texto completo da fonteA decreased sympathetic nervous system (SNS) reactivity could be involved in the physiopathology of obesity. We used spectral analysis to measure the variability of heart rate and blood pressure in normotensive obese subjects. In standing position, baroreflexe sensitivity and SNS reactivity were altered and negatively correlated to insulin resistance indexes. After a glucose load, an impaired change in indices of sympathetic modulation was observed. Increased leptin to fat mass ratio was paradoxically associated with a decreased sympathetic cardiac modulation. This relationship persisted after weight loss. These abnormalities including impaired SNS reactivity, insulin resistance and an increased leptin concentration for a given fat mass, without hypertension could be described as a particular phenotype of obesity. Catecholamine resistance of adipocyte lipolysis could be related to cell membrane abnormalities. This hypothesis was tested in vitro by increasing the membrane sphingomyelin content of 3T3L1 adipocytes. At short term, a decrease in stimulated lipolysis was observed, that could be related to abnormal membrane signal transduction. The transcription of genes implicated in the regulation of cholesterol metabolism and lipogenesis was activated, but without change in the transcription of beta-adrenergic receptors
Sourioux, Mélissa. "Étude des mécanismes de coordination des activités rythmiques locomotrices et sympathiques au sein d’un réseau spinal activé par l’acétylcholine chez le rat nouveau-né". Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0895/document.
Texto completo da fonteLocomotion, as any other forms of physical activity, mobilizes the autonomic nervous system to match the increasing physiological demand. These autonomic responses mostly rely on the coupling between sympathetic and somatic motor activities. The propriospinal cholinergic system plays an important role in the control of locomotor networks, and several lines of evidences suggest that it may also activate sympathetic preganglionic neurons from the intermediolateral nucleus (IMLs). The aim of my doctoral thesis was to investigate the role of the cholinergic propriospinal system in the coordination between these two systems. Using the in vitro isolated spinal cord from new born rat, we showed that application of acetylcholine synchronized the locomotor and sympathetic networks, via the activation of muscarinic receptors. Indeed, the non-selective agonist oxotremorine induced slow rhythmic activity blocked by M1, M2, M3 and M4 muscarinic receptor antagonists. In addition, oxotremorine revealed endogenous rhythmogenic capabilities of the thoracic segments. This slow oscillatory activity propagated from thoracic ventral roots to lumbar ones, but not the reverse. We observed that thoracic MNs were rhythmically activated during both locomotorlike activity and oxotremorine-induced rhythm. In contrast, IMLs were rhythmically activated solely in the presence of oxotremorine. This study provides new light on the origin of the coupling between the somatic and the sympathetic systems. We propose that synchronizing mechanisms are achieved in part by an intraspinal network which may be activated under the control of the cholinergic propriospinal system
Ravé, Guillaume. "Evaluation de l’adaptation à l’entraînement du footballeur professionnel par la variabilité de la fréquence cardiaque : intérêt de la position debout". Thesis, Angers, 2016. http://www.theses.fr/2016ANGE0040/document.
Texto completo da fonteHeart Rate Variability (HRV) is a simple and noninvasive tool to assess autonomic nervous system(ANS) influences to the heart. ANS is made of twoopposing effect branches. The sympathetic oneactivates the heart while the parasympathetic one slowsit down. Parasympathetic indicators derived from HRVare well studied in the context of endurance sports.They could be determined by means of time or spectralanalysis (Root mean Square of the Successive Difference, RMSSD, and High Frequency, HF, respectively). They provide key information to monitor training adaptation. In the case of soccer, a balance between training charge and recovery is necessary because of the numerous games during a whole season. HRV is supposed to assist coaches in order tooptimize training and thus players’ physical performance. Many European soccer clubs use the indicator recommended for endurance sports (RMSSD). However, soccer is an intermittent sport that involves theoretically more the sympathetic nervous system(reactivity) than the parasympathetic one. Our studies on professional soccer players show that RMSSD is not the most relevant indicator, neither to monitor training during a pre-season nor to predict fitness perception during competition. We demonstrated that HRV spectralanalysis performed while players are standing is more appropriate since this position involved the sympathetic nervous system. However, spectral analysis failed toidentify sympathetic nervous system as the key determinant of soccer training adaptation. In addition, our results challenged the link between RMSSD and the parasympathetic nervous system. In conclusion,spectral analysis of HRV performed in the standing position is a useful tool in the case of intermittent highlevel sports
Livros sobre o assunto "Système nerveux sympathique autonome"
1946-, Nilsson Stefan, e Holmgren Susanne 1946-, eds. Comparative physiology and evolution of the autonomic nervous system. Chur, Switzerland: Harwood Academic Publishers, 1994.
Encontre o texto completo da fonteAppenzeller, Otto. The autonomic nervous system: An introduction to basic and clinical concepts. 4a ed. Amsterdam: Elsevier, 1990.
Encontre o texto completo da fonteEmilio, Oribe, ed. The autonomic nervous system: An introduction to basic and clinical concepts. 5a ed. Amsterdam: Elsevier, 1997.
Encontre o texto completo da fonteRetsin, Auguste. De la Structure Intime du Système Nerveux Central, Périphérique et Grand Sympathique... Creative Media Partners, LLC, 2023.
Encontre o texto completo da fonteBroadley, Kenneth J. Autonomic Pharmacology. Taylor & Francis Group, 2017.
Encontre o texto completo da fonteBroadley, Kenneth J. Autonomic Pharmacology. Taylor & Francis Group, 2017.
Encontre o texto completo da fonteBroadley, Kenneth J. Autonomic Pharmacology. Taylor & Francis Group, 2017.
Encontre o texto completo da fonteBroadley, Kenneth J. Autonomic pharmacology. Ellis Horwood, 1994.
Encontre o texto completo da fonteBroadley, Kenneth J. Autonomic Pharmacology. Taylor & Francis Group, 2017.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Système nerveux sympathique autonome"
Trabelsi, D., e Y. Rouxeville. "Le système nerveux autonome en auriculothérapie". In Abrégé de physiologie à l’usage des acupuncteurs et des réflexothérapeutes, 195–201. Paris: Springer Paris, 2013. http://dx.doi.org/10.1007/978-2-8178-0361-6_15.
Texto completo da fonteBuclin, T., e E. Albrecht. "Système nerveux autonome". In Manuel pratique d'anesthésie, 125–43. Elsevier, 2015. http://dx.doi.org/10.1016/b978-2-294-73189-1.00010-6.
Texto completo da fonteBuclin, T., e E. Albrecht. "Système nerveux autonome". In Manuel pratique d'anesthésie, 119–35. Elsevier, 2009. https://doi.org/10.1016/b978-2-294-70722-3.50010-3.
Texto completo da fonteFuller, Geraint, e Catherine Masson. "Le système nerveux autonome". In L'Examen Neurologique Facile, 183–85. Elsevier, 2009. http://dx.doi.org/10.1016/b978-2-8101-0115-3.00026-3.
Texto completo da fonte"Pathologie Du Système Nerveux Autonome". In Abord Clinique en Neurologie, 149–56. Paris: Springer Paris, 2010. http://dx.doi.org/10.1007/978-2-8178-0041-7_6.
Texto completo da fonteCouture, Réjean, Alzbeta Chorvatova e Elvire Vaucher. "Pharmacologie du système nerveux autonome". In Précis de pharmacologie, 271–91. Les Presses de l’Université de Montréal, 2015. http://dx.doi.org/10.1515/9782760634534-012.
Texto completo da fonteCouture, Réjean, Elvire Vaucher e Pierre Beaulieu. "Système nerveux autonome et anesthésie". In Précis d'anesthésie et de réanimation, 289–309. Les Presses de l’Université de Montréal, 2020. http://dx.doi.org/10.1515/9782760641266-015.
Texto completo da fonteCahana, Alex, e Alain Forster. "Système nerveux autonome et douleur". In Pharmacologie de la douleur, 109–28. Les Presses de l’Université de Montréal, 2005. http://dx.doi.org/10.1515/9782760624368-006.
Texto completo da fonteEbert, Thomas J., e Matthew J. Rowan. "Exploration du système nerveux autonome cardiovasculaire". In Anesthésie : Conduites Cliniques, 750. Elsevier, 2014. https://doi.org/10.1016/b978-2-294-73068-9.00608-3.
Texto completo da fonte"Chapitre 3 • Système nerveux autonome et interaction sociale". In La théorie polyvagale, 77–86. EDP Sciences, 2021. http://dx.doi.org/10.1051/978-2-7598-2620-9.c007.
Texto completo da fonte