Siga este link para ver outros tipos de publicações sobre o tema: Système de Recommendation.

Teses / dissertações sobre o tema "Système de Recommendation"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores trabalhos (teses / dissertações) para estudos sobre o assunto "Système de Recommendation".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja as teses / dissertações das mais diversas áreas científicas e compile uma bibliografia correta.

1

Silveira, Netto Nunes Maria Augusta. "Système de Recommendation basé sur Traits de Personnalité". Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2008. http://tel.archives-ouvertes.fr/tel-00348370.

Texto completo da fonte
Resumo:
Internet est une source énorme de produits et services disponibles pour les utilisateurs. Il existe un grand effort de la part des chercheurs pour créer des stratégies destinées à personnaliser ces produits/services pour chaque utilisateur. Cette personnalisation peut être fournie par les Systèmes de Recommandation capables de répertorier les préférences des utilisateurs avec des produits ou services spécifiques. Les chercheurs dans la cadre de la psychologie, de la neurologie et de l'informatique affective sont accord pour affirmer que le raisonnement humain et la prise de décision dans les systèmes informatiques sont difficilement affectées par les aspects psychologiques. Ainsi, pour maintenir le même niveau de personnalisation assuré par les humains, les ordinateurs devraient " raisonner " de la même façon, en prenant en compte les aspects psychologiques des utilisateurs. Néanmoins, ces aspects psychologiques ne sont malheureusement pas considérés dans la plupart des modèles de Profils d'Utilisateurs utilisés dans les Systèmes de Recommandation. Par conséquent, les Systèmes de Recommandation existants n'utilisent pas les caractéristiques psychologiques comme les traits de Personnalité au cours du procédé de prise de décisions caractéristiques. Dans cette thèse, nous proposons d'implanter des traits de Personnalité dans les Profils d'utilisateurs dans le but d'être capable d'obtenir quelques éléments sur l'utilisation de ces aspects psychologiques dans les Systèmes de Recommandation peuvent être cohérents et efficaces.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Aligon, Julien. "Similarity-based recommendation of OLAP sessions". Thesis, Tours, 2013. http://www.theses.fr/2013TOUR4022/document.

Texto completo da fonte
Resumo:
L’OLAP (On-Line Analytical Processing) est le paradigme principal pour accéder aux données multidimensionnelles dans les entrepôts de données. Pour obtenir une haute expressivité d’interrogation, malgré un petit effort de formulation de la requête, OLAP fournit un ensemble d’opérations (comme drill-down et slice-and-dice ) qui transforment une requête multidimensionnelle en une autre, de sorte que les requêtes OLAP sont normalement formulées sous la forme de séquences appelées Sessions OLAP. Lors d’une session OLAP l’utilisateur analyse les résultats d’une requête et, selon les données spécifiques qu’il voit, applique une seule opération afin de créer une nouvelle requête qui lui donnera une meilleure compréhension de l’information. Les séquences de requêtes qui en résultent sont fortement liées à l’utilisateur courant, le phénomène analysé, et les données. Alors qu’il est universellement reconnu que les outils OLAP ont un rôle clé dans l’exploration souple et efficace des cubes multidimensionnels dans les entrepôts de données, il est aussi communément admis que le nombre important d’agrégations et sélections possibles, qui peuvent être exploités sur des données, peut désorienter l’expérience utilisateur
OLAP (On-Line Analytical Processing) is the main paradigm for accessing multidimensional data in data warehouses. To obtain high querying expressiveness despite a small query formulation effort, OLAP provides a set of operations (such as drill-down and slice-and-dice) that transform one multidimensional query into another, so that OLAP queries are normally formulated in the form of sequences called OLAP sessions. During an OLAP session the user analyzes the results of a query and, depending on the specific data she sees, applies one operation to determine a new query that will give her a better understanding of information. The resulting sequences of queries are strongly related to the issuing user, to the analyzed phenomenon, and to the current data. While it is universally recognized that OLAP tools have a key role in supporting flexible and effective exploration of multidimensional cubes in data warehouses, it is also commonly agreed that the huge number of possible aggregations and selections that can be operated on data may make the user experience disorientating
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Lonjarret, Corentin. "Sequential recommendation and explanations". Thesis, Lyon, 2021. http://theses.insa-lyon.fr/publication/2021LYSEI003/these.pdf.

Texto completo da fonte
Resumo:
Ces dernière années, les systèmes de recommandation ont reçu beaucoup d'attention avec l'élaboration de nombreuses propositions qui tirent parti des nouvelles avancées dans les domaines du Machine Learning et du Deep Learning. Grâce à l'automatisation de la collecte des données des actions des utilisateurs tels que l'achat d'un objet, le visionnage d'un film ou le clic sur un article de presse, les systèmes de recommandation ont accès à de plus en plus d'information. Ces données sont des retours implicites des utilisateurs (appelé «~implicit feedback~» en anglais) et permettent de conserver l'ordre séquentiel des actions de l’utilisateur. C'est dans ce contexte qu'ont émergé les systèmes de recommandations qui prennent en compte l’aspect séquentiel des données. Le but de ces approches est de combiner les préférences des utilisateurs (le goût général de l’utilisateur) et la dynamique séquentielle (les tendances à court terme des actions de l'utilisateur) afin de prévoir la ou les prochaines actions d'un utilisateur. Dans cette thèse, nous étudions la recommandation séquentielle qui vise à prédire le prochain article/action de l'utilisateur à partir des retours implicites des utilisateurs. Notre principale contribution, REBUS, est un nouveau modèle dans lequel seuls les items sont projetés dans un espace euclidien d'une manière qui intègre et unifie les préférences de l'utilisateur et la dynamique séquentielle. Pour saisir la dynamique séquentielle, REBUS utilise des séquences fréquentes afin de capturer des chaînes de Markov d'ordre personnalisé. Nous avons mené une étude empirique approfondie et démontré que notre modèle surpasse les performances des différents modèles de l’état de l’art, en particulier sur des jeux de données éparses. Nous avons également intégré REBUS dans myCADservices, une plateforme collaborative de la société française Visiativ. Nous présentons notre retour d'expérience sur cette mise en production du fruit de nos travaux de recherche. Enfin, nous avons proposé une nouvelle approche pour expliquer les recommandations fournies aux utilisateurs. Le fait de pouvoir expliquer une recommandation permet de contribuer à accroître la confiance qu'un utilisateur peut avoir dans un système de recommandation. Notre approche est basée sur la découverte de sous-groupes pour fournir des explications interprétables d'une recommandation pour tous types de modèles qui utilisent comme données d’entrée les retours implicites des utilisateurs
Recommender systems have received a lot of attention over the past decades with the proposal of many models that take advantage of the most advanced models of Deep Learning and Machine Learning. With the automation of the collect of user actions such as purchasing of items, watching movies, clicking on hyperlinks, the data available for recommender systems is becoming more and more abundant. These data, called implicit feedback, keeps the sequential order of actions. It is in this context that sequence-aware recommender systems have emerged. Their goal is to combine user preference (long-term users' profiles) and sequential dynamics (short-term tendencies) in order to recommend next actions to a user. In this thesis, we investigate sequential recommendation that aims to predict the user's next item/action from implicit feedback. Our main contribution is REBUS, a new metric embedding model, where only items are projected to integrate and unify user preferences and sequential dynamics. To capture sequential dynamics, REBUS uses frequent sequences in order to provide personalized order Markov chains. We have carried out extensive experiments and demonstrate that our method outperforms state-of-the-art models, especially on sparse datasets. Moreover we share our experience on the implementation and the integration of REBUS in myCADservices, a collaborative platform of the French company Visiativ. We also propose methods to explain the recommendations provided by recommender systems in the research line of explainable AI that has received a lot of attention recently. Despite the ubiquity of recommender systems only few researchers have attempted to explain the recommendations according to user input. However, being able to explain a recommendation would help increase the confidence that a user can have in a recommendation system. Hence, we propose a method based on subgroup discovery that provides interpretable explanations of a recommendation for models that use implicit feedback
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Nurbakova, Diana. "Recommendation of activity sequences during distributed events". Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI115/document.

Texto completo da fonte
Resumo:
Les événements distribués, se déroulant sur plusieurs jours et/ou sur plusieurs lieux, tels que les conventions, festivals ou croisières, sont de plus en plus populaires ces dernières années et attirant des milliers de participants. Les programmes de ces événements sont généralement très denses, avec un grand nombre d'activités se déroulant en parallèle. Ainsi, choisir les activités à entreprendre est devenu un véritable défi pour les participants. Les systèmes de recommandation peuvent constituer une solution privilégiée dans ce genre d'environnement. De nombreux travaux en recommandation se sont concentrés sur la recommandation personnalisée d'objets spatiaux (points d'intérêts immuables dans le temps ou événements éphémères) indépendants les uns des autres. Récemment, la communauté scientifique s'est intéressée à la recommandation de séquences de points d'intérêts, exploitant des motifs comportementaux des utilisateurs et incorporant des contraintes spatio-temporelles pour recommander un itinéraire de points d'intérêts. Néanmoins, très peu de travaux se sont intéressés à la problématique de la recommandation de séquence d'activités, problème plus difficile du fait du caractère éphémère des objets à recommander. Dans cette thèse, nous proposons tout d'abord une formalisation du problème de la recommandation de séquences d'activités. Dans ce cadre, nous proposons et discutons une classification des types d'influences pouvant avoir un impact sur l'estimation de l'intérêt des utilisateurs dans les activités. Ensuite, nous proposons ANASTASIA, une approche de recommandation personnalisée de séquences d'activités lors des événements distribués. Notre approche est basée sur trois composants clés : (1) l'estimation de l'intérêt d'un utilisateur pour une activité, prenant en compte différentes influences, (2) l'intégration de motifs comportementaux d'utilisateurs basés sur leurs historiques d'activités et (3) la construction d'un planning ou séquence d'activités prenant en compte les contraintes spatio-temporelles de l'utilisateur et des activités. Nous explorons ainsi des méthodes issus de l'apprentissage de séquences et de l'optimisation discrète pour résoudre le problème. Enfin, nous démontrons le manque de jeu de données librement accessibles pour l'évaluation des algorithmes de recommandation d'événements et de séquences d'événements. Nous pallions à ce problème en proposant deux jeux de données, librement accessibles, que nous avons construits au cours de la thèse: Fantasy_db et DEvIR. Fantasy_db comporte des données de participation à des événements lors d'une croisière, recueillies lors d'une étude utilisateur, tandis que DEvIR réunit des données de participation au Comic Con de San Diego, convention majeure dans le domaine
Multi-day events such as conventions, festivals, cruise trips, to which we refer to as distributed events, have become very popular in recent years, attracting hundreds or thousands of participants. Their programs are usually very dense, making it challenging for the attendees to make a decision which events to join. Recommender systems appear as a common solution in such an environment. While many existing solutions deal with personalised recommendation of single items, recent research focuses on the recommendation of consecutive items that exploits user's behavioural patterns and relations between entities, and handles geographical and temporal constraints. In this thesis, we first formulate the problem of recommendation of activity sequences, classify and discuss the types of influence that have an impact on the estimation of the user's interest in items. Second, we propose an approach (ANASTASIA) to solve this problem, which aims at providing an integrated support for users to create a personalised itinerary of activities. ANASTASIA brings together three components, namely: (1) estimation of the user’s interest in single items, (2) use of sequential influence on activity performance, and (3) building of an itinerary that takes into account spatio-temporal constraints. Thus, the proposed solution makes use of the methods based on sequence learning and discrete optimisation. Moreover, stating the lack of publicly available datasets that could be used for the evaluation of event and itinerary recommendation algorithms, we have created two datasets, namely: (1) event attendance on board of a cruise (Fantasy_db) based on a conducted user study, and (2) event attendance at a major comic book convention (DEvIR). This allows to perform evaluation of recommendation methods, and contributes to the reproducibility of results
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Zhang, Zhao. "Learning Path Recommendation : A Sequential Decision Process". Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0108.

Texto completo da fonte
Resumo:
Au cours des deux dernières décennies, nous avons assisté à une adoption croissante du numérique dans le domaine de l'education. Cela est accompagné par un accroissement du nombre de ressources pédagogiques accessibles par les apprenants. Par conséquent, des systèmes de recommandation deviennent nécessaires pour aider les apprenants à trouver des ressources qui leur sont utiles. En particulier, cela inclut les systèmes de recommandation de parcours d'apprentissage qui visent par exemple à améliorer l'expérience d'apprentissage des apprenants, et notamment leur niveau de connaissance. Dans ce contexte, cette thèse se concentre sur le domaine des systèmes de recommandation de parcours d'apprentissage et sur l'évaluation de ces parcours d'apprentissage recommandés. Cette thèse propose d'aborder la tâche de recommandation comme un problème de prise de décision séquentielle et considère les processus décisionnels de Markov partiellement observables comme une approche adéquate. Dans le domaine spécifique de l'éducation, la mémoire des apprenants est un facteur très important qui doit être pris en compte, et cela a été proposé dans la littérature et utilisé pour promouvoir des recommandations liées à de la révision. Cependant, peu de travaux ont été menés pour la recommandation basée sur des POMDP, et les modèles proposés sont complexes et requièrent beaucoup de données. Cette thèse propose deux modèles de recommandation basés sur POMDP qui considèrent la mémoire des apprenants, tout en limitant la complexité et le volume de données requis. L'évaluation de la recommandation d'un parcours d'apprentissage est une tâche difficile de la littérature, qui peut être effectuée soit en ligne ou hors ligne. L'évaluation en ligne est très populaire, mais elle repose sur des recommandations effectives de parcours aux apprenants, ce qui peut avoir des conséquences dramatiques si les recommandations ne sont pas de qualité. L'évaluation hors ligne repose sur des ensembles de données statiques des activités d'apprentissage des apprenants et simule les recommandations de parcours d'apprentissage. Bien que plus facile à exécuter, il est difficile de procéder à une évaluation hors ligne de l'efficacité d'une recommandation de parcours d'apprentissage avec précision. Ceci tend à justifier le manque de travaux de la littérature sur ce sujet. Pour résoudre ce problème, cette thèse propose également des mesures d'évaluation hors ligne simples. Enfin, ces algorithmes et mesures sont évaluées sur deux jeux de données réels. Nous avons montré que les algorithmes de recommandation proposés ont une qualité de recommandation supérieure à ceux de la littérature, avec une augmentation de la complexité limitée, y compris sur un jeu de données de taille moyenne. En ce qui concerne les mesures d'évaluation, nous avons montré qu'elles permettent effectivement de caractériser et de différencier les algorithmes de recommandation
Over the past couple of decades, there has been an increasing adoption of Internet technology in the e-learning domain, associated with the availability of an increasing number of educational resources. Effective systems are thus needed to help learners to find useful and adequate resources, among which recommender systems play an important role. In particular, learning path recommender systems, that recommend sequences of educational resources, are highly valuable to improve learners' learning experiences. Under this context, this PhD Thesis focuses on the field of learning path recommender systems and the associated offline evaluation of these systems. This PhD Thesis views the learning path recommendation task as a sequential decision problem and considers the partially observable Markov decision process (POMDP) as an adequate approach. In the field of education, the learners' memory strength is a very important factor and several models of learners' memory strength have been proposed in the literature and used to promote review in recommendations. However, little work has been conducted for POMDP-based recommendations, and the models proposed are complex and data-intensive. This PhD Thesis proposes POMDP-based recommendation models that manage learners' memory strength, while limiting the increase in complexity and data required. Under the premise that recommending learners useful and effective learning paths is becoming more and more popular, the evaluation of the effectiveness these recommended learning paths is still a challenging task, that is not often addressed in the literature. Online evaluation is highly popular but it relies on the path recommendations to actual learners, which may have dramatic implications if the recommendations are not accurate. Offline evaluation relies on static datasets of learners' learning activities and simulates learning paths recommendations. Although easier to run, it is difficult to accurately evaluate the effectiveness of a learning path recommendation. This tends to justify the lack of literature on this topic. To tackle this issue, this PhD Thesis also proposes offline evaluation measures, that are designed to be simple to be used in most of the application cases. The recommendation models and evaluation measures the we propose are evaluated on two real learning datasets. The experiments confirm that the recommendation models proposed outperform the models from the literature, with a limited increase in complexity, including for a medium-size dataset
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Omidvar, Tehrani Behrooz. "Optimization-based User Group Management : Discovery, Analysis, Recommendation". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAM038/document.

Texto completo da fonte
Resumo:
Les donn ́ees utilisateurs sont devenue de plus en plus disponibles dans plusieurs do- maines tels que les traces d'usage des smartphones et le Web social. Les donn ́ees util- isateurs, sont un type particulier de donn ́ees qui sont d ́ecrites par des informations socio-d ́emographiques (ex., ˆage, sexe, m ́etier, etc.) et leurs activit ́es (ex., donner un avis sur un restaurant, voter, critiquer un film, etc.). L'analyse des donn ́ees utilisa- teurs int ́eresse beaucoup les scientifiques qui travaillent sur les ́etudes de la population, le marketing en-ligne, les recommandations et l'analyse des donn ́ees `a grande ́echelle. Cependant, les outils d'analyse des donn ́ees utilisateurs sont encore tr`es limit ́es.Dans cette th`ese, nous exploitons cette opportunit ́e et proposons d'analyser les donn ́ees utilisateurs en formant des groupes d'utilisateurs. Cela diff`ere de l'analyse des util- isateurs individuels et aussi des analyses statistiques sur une population enti`ere. Un groupe utilisateur est d ́efini par un ensemble des utilisateurs dont les membres parta- gent des donn ́ees socio-d ́emographiques et ont des activit ́es en commun. L'analyse au niveau d'un groupe a pour objectif de mieux g ́erer les donn ́ees creuses et le bruit dans les donn ́ees. Dans cette th`ese, nous proposons un cadre de gestion de groupes d'utilisateurs qui contient les composantes suivantes: d ́ecouverte de groupes, analyse de groupes, et recommandation aux groupes.La premi`ere composante concerne la d ́ecouverte des groupes d'utilisateurs, c.- `a-d., compte tenu des donn ́ees utilisateurs brutes, obtenir les groupes d'utilisateurs en op- timisantuneouplusieursdimensionsdequalit ́e. Ledeuxi`emecomposant(c.-`a-d., l'analyse) est n ́ecessaire pour aborder le probl`eme de la surcharge de l'information: le r ́esultat d'une ́etape d ́ecouverte des groupes d'utilisateurs peut contenir des millions de groupes. C'est une tache fastidieuse pour un analyste `a ́ecumer tous les groupes trouv ́es. Nous proposons une approche interactive pour faciliter cette analyse. La question finale est comment utiliser les groupes trouv ́es. Dans cette th`ese, nous ́etudions une applica- tion particuli`ere qui est la recommandation aux groupes d'utilisateurs, en consid ́erant les affinit ́es entre les membres du groupe et son ́evolution dans le temps.Toutes nos contributions sont ́evalu ́ees au travers d'un grand nombre d'exp ́erimentations `a la fois pour tester la qualit ́e et la performance (le temps de r ́eponse)
User data is becoming increasingly available in multiple domains ranging from phone usage traces to data on the social Web. User data is a special type of data that is described by user demographics (e.g., age, gender, occupation, etc.) and user activities (e.g., rating, voting, watching a movie, etc.) The analysis of user data is appealing to scientists who work on population studies, online marketing, recommendations, and large-scale data analytics. However, analysis tools for user data is still lacking.In this thesis, we believe there exists a unique opportunity to analyze user data in the form of user groups. This is in contrast with individual user analysis and also statistical analysis on the whole population. A group is defined as set of users whose members have either common demographics or common activities. Group-level analysis reduces the amount of sparsity and noise in data and leads to new insights. In this thesis, we propose a user group management framework consisting of following components: user group discovery, analysis and recommendation.The very first step in our framework is group discovery, i.e., given raw user data, obtain user groups by optimizing one or more quality dimensions. The second component (i.e., analysis) is necessary to tackle the problem of information overload: the output of a user group discovery step often contains millions of user groups. It is a tedious task for an analyst to skim over all produced groups. Thus we need analysis tools to provide valuable insights in this huge space of user groups. The final question in the framework is how to use the found groups. In this thesis, we investigate one of these applications, i.e., user group recommendation, by considering affinities between group members.All our contributions of the proposed framework are evaluated using an extensive set of experiments both for quality and performance
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Chi, Cheng. "Personalized pattern recommendation system of men’s shirts based on precise body measurement". Electronic Thesis or Diss., Centrale Lille Institut, 2022. http://www.theses.fr/2022CLIL0003.

Texto completo da fonte
Resumo:
Les systèmes commerciaux de recommandation de vêtements ont été largement utilisés dans l'industrie de l'habillement. Cependant, les recherches existantes sur la conception de vêtements numériques se sont concentrées sur les évolutions techniques du processus de conception virtuelle, avec peu de retours de métier provenant des designers. La coupe d'un vêtement joue un rôle important dans l'achat de celui-ci par le client. Afin de développer un vêtement correctement ajusté, les stylistes et les modélistes doivent ajuster le patron du vêtement plusieurs fois jusqu'à ce que le client soit satisfait. Actuellement, le modélisme traditionnel présente trois inconvénients majeurs : 1) il est très long et inefficace, 2) il repose trop sur des concepteurs expérimentés, 3) la relation entre la forme du corps humain et le vêtement n'est pas pleinement explorée. Dans la pratique, le styliste joue un rôle clé dans la réussite du processus de conception. Il est nécessaire d'intégrer les connaissances et l'expérience du styliste dans les systèmes actuels de CAD de vêtements afin de fournir rapidement une solution de conception réalisable, centrée sur l'homme et à faible coût, pour chaque besoin personnalisé. En outre, les services basés sur les données, tels que les systèmes de recommandation, la classification des formes corporelles, la modélisation du corps en 3D et l'évaluation de l'ajustement des vêtements, devraient être intégrés dans le système de CAD de l'habillement afin d'améliorer l'efficacité du processus de conception.Sur la base de ces besoins, cette thèse propose un système de recommandation intelligent composé de modèles de vêtements ajustables pour conduire à la conception de vêtements personnalisés. Le système fonctionne en combinaison avec un nouveau processus de conception nouvellement développé, à savoir l'identification de la forme du corps humain - la recommandation d'une solution de conception - la représentation virtuelle 3D et l'évaluation - l'ajustement des paramètres de conception. Ce processus peut être répété jusqu'à ce que l'utilisateur soit satisfait. Le système de recommandation proposé a été validé par quelques cas pratiques de conception réussis
Commercial garment recommendation systems have been widely used in the apparel industry. However, existing research on digital garment design has focused on the technical development of the virtual design process, with little knowledge of traditional designers. The fit of a garment plays a significant role in whether a customer purchases that garment. In order to develop a well-fitting garment, designers and pattern makers should adjust the garment pattern several times until the customer is satisfied. Currently, there are three main disadvantages of traditional pattern-making: 1) it is very time-consuming and inefficient, 2) it relies too much on experienced designers, 3) the relationship between the human body shape and the garment is not fully explored. In practice, the designer plays a key role in a successful design process. There is a need to integrate the designer's knowledge and experience into current garment CAD systems to provide a feasible human-centered, low-cost design solution quickly for each personalized requirement. Also, data-based services such as recommendation systems, body shape classification, 3D body modelling, and garment fit assessment should be integrated into the apparel CAD system to improve the efficiency of the design process.Based on the above issues, in this thesis, a fit-oriented garment pattern intelligent recommendation system is proposed for supporting the design of personalized garment products. The system works in combination with a newly developed design process, i.e. body shape identification - design solution recommendation - 3D virtual presentation and evaluation - design parameter adjustment. This process can be repeated until the user is satisfied. The proposed recommendation system has been validated by some successful practical design cases
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Leblay, Joffrey. "Vers une nouvelle forme d'accompagnement des processus dans les systèmes interactifs : apport de la fouille de processus et de la recommandation". Thesis, La Rochelle, 2019. http://www.theses.fr/2019LAROS021.

Texto completo da fonte
Resumo:
Un système d’information est un système socio-technique comprenant des processus métier et des données afférentes. Avec le développement et la démocratisation des outils informatiques, les informations stockées sont plus importantes et réparties. Il en est de même pour les processus qui deviennent de plus en plus complexes et sensibles pour les organisations. Afin d’obtenir un service, nous sommes de plus en plus amenés à composer des processus métiers pour collecter l’information, la transformer et la réinjecter. L’objectif de cette thèse consiste à explorer la problématique du pilotage de processus afin de donner des pistes pour la fabrication d’un compagnon qui guiderait l’utilisateur dans sa phase de découverte des processus. Nous avons concentré nos efforts sur les aspects faisabilité informatique. Plus particulièrement, nous étudions la possibilité de définir une méthodologie de recommandation à partir des processus d’usage et de mettre en place l’architecture logicielle correspondante. Les travaux présentés se trouvent à l’interface entre plusieurs domaines. Nous avons choisi une démarche de recherche qui s’appuie sur un cycle itératif. Après avoir analysé le domaine de la fouille de processus puis la recommandation, nous avons déduit qu'il fallait renforcer notre approche sur la collecte d’information. Ceci nous a conduit à mener des études sur les systèmes à base de traces. Nous avons ensuite cherché à valider la continuité de notre approche sur un cas d’étude simple. Il s’agit de personnaliser le parcours d’un étudiant au cours de sa formation. Nous avons mis en place un démonstrateur qui permet, à partir du recueil des informations issues des promotions précédentes, d’extraire de la connaissance sur les parcours des étudiants et d’émettre des recommandations sur les suites du parcours pour un étudiant particulier. Cette étude nous a permis de mettre en place notre processus de recommandation de bout en bout et de proposer une première esquisse de notre architecture. Nous avons ensuite cherché un cas d’étude plus ambitieux pour lequel aucun processus métier n’a été prédéfini par un expert. Nous souhaitions voir s’il est possible d’identifier des comportements et/ou stratégies d’utilisateurs vis-à-vis d’un système. Nous nous sommes placés dans un contexte d’apprentissage où l’apprenant est impliqué dans une simulation d’un micro-monde. Ce cas d’étude nous a permis de montrer comment adapter notre méthodologie et comment prendre en compte les données contextuelles. Ce cas d’étude a donné lieu à une expérimentation où deux groupes ont utilisé notre simulateur. Le premier sans recommandation, ce qui nous a permis de constituer un ensemble de traces d’exécution qui ont servi à extraire les connaissances nécessaires sur nos processus métier. Le second groupe a bénéficié de notre système de recommandation. Nous avons observé que dans ce dernier groupe le critère de performance était amélioré car les phénomènes d’essais/erreurs se trouvent considérablement réduits. L’expérience acquise au cours de cette thèse nous pousse à orienter nos travaux vers l’aide à la personnalisation de parcours d’apprentissage. En particulier avec la définition des formations en blocs de compétences, la prise en compte du profil de l’apprenant, qu'il s’agisse de ses connaissances acquises aussi bien que de ses stratégies d’apprentissage, conduit à fabriquer une trajectoire d’apprentissage, et donc une sélection de blocs de formation, qui doit être personnalisée. La méthodologie que nous avons proposée constitue une brique pour fabriquer un tel écosystème
An information system is a socio-technical system comprising Business Processes and related data. With the development and democratization of IT tools, stored information is getting more important and distributed. The same is true for processes that are becoming increasingly complex and sensitive for organizations. In order to obtain a service, we had to compose business processes to collect information, transform it and reinject it. The objective of this thesis is to explore the problematic of process control in order to give options for the fabrication of a companion that would guide the user when discovering a process. We focused on computer science aspects. In particular, we are studying the possibility of defining a recommendation methodology based on extracted processes and implementing the corresponding software architecture. The works presented are at the interface between several domains. We chose a research approach based on an iterative cycle. After analyzing the field of process mining and recommendation, we concluded that we needed to strengthen our approach to information gathering. This led us to carry out studies on trace-based systems. We then sought to validate the continuity of our approach on a simple case study. It is about personalizing the course of a student during his training. We have set up a demonstrator which, based on the collection of information from previous promotions, extracts knowledge about the students' courses and makes recommendations on the consequences of the course for a particular student. This study allowed us to set up our end-to-end recommendation process and to propose a first sketch of our architecture. We then looked for a more ambitious case study for which no business process was predefined by an expert. We wanted to see if it is possible to identify behaviors and / or strategies of users using a system. We have placed ourselves in a learning context where the learner is involved in a simulation of a micro-world. This case study allowed us to show how to adapt our methodology and how to take contextual data into account. This case study gave rise to an experiment where two groups used our simulator. The first without recommendation, which allowed us to build a set of execution traces that were used to extract the necessary knowledge on our business processes. The second group benefited from our recommendation system. We observed that in the latter group the performance criterion was improved because the trial / error phenomena are considerably reduced. The experience gained during this thesis pushes us to direct our work toward helping to personalize learning trajectory. In particular, with the definition of a class, taking into account the learner's profile, both in terms of knowledge acquired and learning strategies, leads to the creation of a learning path, and therefore a selection of training blocks, which must be personalized. The methodology we have proposed is a brick to build such an ecosystem
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Nzekon, Nzeko'o Armel Jacques. "Système de recommandation avec dynamique temporelle basée sur les flots de liens". Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS454.

Texto completo da fonte
Resumo:
La recommandation des produits appropriés aux clients est cruciale dans de nombreuses plateformes de e-commerce qui proposent un grand nombre de produits. Les systèmes de recommandation sont une solution favorite pour la réalisation de cette tâche. La majorité des recherches de ce domaine reposent sur des notes explicites que les utilisateurs attribuent aux produits, alors que la plupart du temps ces notes ne sont pas disponibles en quantité suffisante. Il est donc important que les systèmes de recommandation utilisent les données implicites que sont des flots de liens représentant les relations entre les utilisateurs et les produits, c'est-à-dire l'historique de navigation, des achats et de streaming. C'est ce type de données implicites que nous exploitons. Une approche populaire des systèmes de recommandation consiste, pour un entier N donné, à proposer les N produits les plus pertinents pour chaque utilisateur : on parle de recommandation top-N. Pour ce faire, bon nombre de travaux reposent sur des informations telles que les caractéristiques des produits, les goûts et préférences antérieurs des utilisateurs et les relations de confiance entre ces derniers. Cependant, ces systèmes n'utilisent qu'un ou deux types d'information simultanément, ce qui peut limiter leurs performances car l'intérêt qu'un utilisateur a pour un produit peut à la fois dépendre de plus de deux types d'information. Pour remédier à cette limite, nous faisons trois propositions dans le cadre des graphes de recommandation. La première est une extension du Session-based Temporal Graph (STG) introduit par Xiang et al., et qui est un graphe dynamique combinant les préférences à long et à court terme des utilisateurs, ce qui permet de mieux capturer la dynamique des préférences de ces derniers. STG ne tient pas compte des caractéristiques des produits et ne fait aucune différence de poids entre les arêtes les plus récentes et les arêtes les plus anciennes. Le nouveau graphe proposé, Time-weight content-based STG contourne les limites du STG en y intégrant un nouveau type de nœud pour les caractéristiques des produits et une pénalisation des arêtes les plus anciennes. La seconde contribution est un système de recommandation basé sur l'utilisation de Link Stream Graph (LSG). Ce graphe est inspiré d'une représentation des flots de liens et a la particularité de considérer le temps de manière continue contrairement aux autres graphes de la littérature, qui soit ignore la dimension temporelle comme le graphe biparti classique (BIP), soit considère le temps de manière discontinue avec un découpage du temps en tranches comme STG
Recommending appropriate items to users is crucial in many e-commerce platforms that propose a large number of items to users. Recommender systems are one favorite solution for this task. Most research in this area is based on explicit ratings that users give to items, while most of the time, ratings are not available in sufficient quantities. In these situations, it is important that recommender systems use implicit data which are link stream connecting users to items while maintaining timestamps i.e. users browsing, purchases and streaming history. We exploit this type of implicit data in this thesis. One common approach consists in selecting the N most relevant items to each user, for a given N, which is called top-N recommendation. To do so, recommender systems rely on various kinds of information, like content-based features of items, past interest of users for items and trust between users. However, they often use only one or two such pieces of information simultaneously, which can limit their performance because user's interest for an item can depend on more than two types of side information. To address this limitation, we make three contributions in the field of graph-based recommender systems. The first one is an extension of the Session-based Temporal Graph (STG) introduced by Xiang et al., which is a dynamic graph combining long-term and short-term preferences in order to better capture user preferences over time. STG ignores content-based features of items, and make no difference between the weight of newer edges and older edges. The new proposed graph Time-weight Content-based STG addresses STG limitations by adding a new node type for content-based features of items, and a penalization of older edges. The second contribution is the Link Stream Graph (LSG) for temporal recommendations. This graph is inspired by a formal representation of link stream, and has the particularity to consider time in a continuous way unlike others state-of-the-art graphs, which ignore the temporal dimension like the classical bipartite graph (BIP), or consider time discontinuously like STG where time is divided into slices. The third contribution in this thesis is GraFC2T2, a general graph-based framework for top-N recommendation. This framework integrates basic recommender graphs, and enriches them with content-based features of items, users' preferences temporal dynamics, and trust relationships between them. Implementations of these three contributions on CiteUlike, Delicious, Last.fm, Ponpare, Epinions and Ciao datasets confirm their relevance
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Rajaonarivo, Hiary Landy. "Approche co-évolutive humain-système pour l'exploration de bases de données". Thesis, Brest, 2018. http://www.theses.fr/2018BRES0114/document.

Texto completo da fonte
Resumo:
Ces travaux de recherche portent sur l'aide à l'exploration de bases de données.La particularité de l'approche proposée repose sur un principe de co-évolution de l'utilisateur et d'une interface intelligente. Cette dernière devant permettre d'apporter une aide à la compréhension du domaine représenté par les données. Pour cela, une métaphore de musée virtuel vivant a été adoptée. Ce musée évolue de façon incrémentale au fil des interactions de l'utilisateur. Il incarne non seulement les données mais également des informations sémantiques explicitées par un modèle de connaissances spécifique au domaine exploré.A travers l'organisation topologique et l'évolution incrémentale, le musée personnalise en ligne le parcours de l'utilisateur. L'approche est assurée par trois mécanismes principaux : l'évaluation du profil de l'utilisateur modélisé par une pondération dynamique d'informations sémantiques, l'utilisation de ce profil dynamique pour établir une recommandation ainsi que l'incarnation des données dans le musée.L'approche est appliquée au domaine du patrimoine dans le cadre du projet ANTIMOINE, financé par l'Agence Nationale de la Recherche (ANR). La généricité de cette dernière a été démontrée à travers son application à une base de données de publications mais également à travers l'utilisation de types d'interfaces variés (site web, réalité virtuelle).Des expérimentations ont permis de valider l'hypothèse que notre système s'adapte aux évolutions des comportements de l'utilisateur et qu'il est capable, en retour, d'influencer ce dernier. Elles ont également permis de comparer une interface 2D avec une interface 3D en termes de qualité de perception, de guidage, de préférence et d'efficacité
This thesis focus on a proposition that helps humans during the exploration of database. The particularity of this proposition relies on a co-evolution principle between the user and an intelligent interface. It provides a support to the understanding of the domain represented by the data. A metaphor of living virtual museum is adopted. This museum evolves incrementally according to the user's interactions. It incarnates both the data and the semantic information which are expressed by a knowledge model specific to the domain of the data. Through the topological organization and the incremental evolution, the museum personalizes online the user's exploration. The approach is insured by three main mechanisms: the evaluation of the user profile modelled by a dynamical weighting of the semantic information, the use of this dynamic profile to establish a recommendation as well as the incarnation of the data in the living museum. The approach has been applied to the heritage domain as part of the ANTIMOINE project, funded by the National Research Agency (ANR). The genericity of the latter has been demonstrated through its application to a database of publications but also using various types of interfaces (website, virtual reality).Experiments have validated the hypothesis that our system adapts itself to the user behavior and that it is able, in turn, to influence him.They also showed the comparison between a 2D interface and a 3D interface in terms of quality of perception, guidance, preference and efficiency
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Soualah, Alila Fayrouz. "CAMLearn* : une architecture de système de recommandation sémantique sensible au contexte : application au domaine du m-learning". Thesis, Dijon, 2015. http://www.theses.fr/2015DIJOS032/document.

Texto completo da fonte
Resumo:
Au vu de l'émergence rapide des nouvelles technologies mobiles et la croissance des offres et besoins d'une société en mouvement en formation, les travaux se multiplient pour identifier de nouvelles plateformes d'apprentissage pertinentes afin d'améliorer et faciliter le processus d'apprentissage à distance. La prochaine étape de l'apprentissage à distance est naturellement le port de l'apprentissage électronique vers les nouveaux systèmes mobiles. On parle alors de m-learning (apprentissage mobile). Jusqu'à présent l'environnement d'apprentissage était soit défini par un cadre pédagogique soit imposé par le contenu d'apprentissage. Maintenant, nous cherchons, à l'inverse, à adapter le cadre pédagogique et le contenu d'apprentissage au contexte de l'apprenant.Nos travaux de recherche portent sur le développement d'une nouvelle architecture pour le m-learning. Nous proposons une approche pour un système m-learning contextuel et adaptatif intégrant des stratégies de recommandation de scénarios de formations sans risque de rupture
Given the rapid emergence of new mobile technologies and the growth of needs of a moving society in training, works are increasing to identify new relevant educational platforms to improve distant learning. The next step in distance learning is porting e-learning to mobile systems. This is called m-learning. So far, learning environment was either defined by an educational setting, or imposed by the educational content. In our approach, in m-learning, we change the paradigm where the system recommends content and adapts learning follow to learner's context
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Falih, Issam. "Attributed Network Clustering : Application to recommender systems". Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCD011/document.

Texto completo da fonte
Resumo:
Au cours de la dernière décennie, les réseaux (les graphes) se sont révélés être un outil efficace pour modéliser des systèmes complexes. La problématique de détection de communautés est une tâche centrale dans l’analyse des réseaux complexes. La majeur partie des travaux dans ce domaine s’intéresse à la structure topologique des réseaux. Cependant, dans plusieurs cas réels, les réseaux complexes ont un ensemble d’attributs associés aux nœuds et/ou aux liens. Ces réseaux sont dites : réseaux attribués. Mes activités de recherche sont basées principalement sur la détection des communautés dans les réseaux attribués. Pour aborder ce problème, on s’est intéressé dans un premier temps aux attributs relatifs aux liens, qui sont un cas particulier des réseaux multiplexes. Un multiplex est un modèle de graphe multi-relationnel. Il est souvent représenté par un graphe multi-couches. Chaque couche contient le même ensemble de nœuds mais encode une relation différente. Dans mes travaux de recherche, nous proposons une étude comparative des différentes approches de détection de communautés dans les réseaux multiplexes. Cette étude est faite sur des réseaux réels. Nous proposons une nouvelle approche centrée "graine" pour la détection de communautés dans les graphes multiplexes qui a nécessité la redéfinition des métriques de bases des réseaux complexes au cas multiplex. Puis, nous proposons une approche de clustering dans les réseaux attribués qui prend en considération à la fois les attributs sur les nœuds et sur les liens. La validation de mes approches a été faite avec des indices internes et externes, mais aussi par une validation guidée par un système de recommandation que nous avons proposé et dont la détection de communautés est sa tâche principale. Les résultats obtenus sur ces approches permettent d’améliorer la qualité des communautés détectées en prenant en compte les informations sur les attributs du réseaux. De plus, nous offrons des outils d’analyse des réseaux attribués sous le langage de programmation R
In complex networks analysis field, much effort has been focused on identifying graphs communities of related nodes with dense internal connections and few external connections. In addition to node connectivity information that are mostly composed by different types of links, most real-world networks contains also node and/or edge associated attributes which can be very relevant during the learning process to find out the groups of nodes i.e. communities. In this case, two types of information are available : graph data to represent the relationship between objects and attributes information to characterize the objects i.e nodes. Classic community detection and data clustering techniques handle either one of the two types but not both. Consequently, the resultant clustering may not only miss important information but also lead to inaccurate findings. Therefore, various methods have been developed to uncover communities in networks by combining structural and attribute information such that nodes in a community are not only densely connected, but also share similar attribute values. Such graph-shape data is often referred to as attributed graph.This thesis focuses on developing algorithms and models for attributed graphs. Specifically, I focus in the first part on the different types of edges which represent different types of relations between vertices. I proposed a new clustering algorithms and I also present a redefinition of principal metrics that deals with this type of networks.Then, I tackle the problem of clustering using the node attribute information by describing a new original community detection algorithm that uncover communities in node attributed networks which use structural and attribute information simultaneously. At last, I proposed a collaborative filtering model in which I applied the proposed clustering algorithms
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

El, khoury Theresia. "Système de recommandation expérientiel pour l'accès et la navigation documentaire". Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCA018.

Texto completo da fonte
Resumo:
À l'ère de l'internet, la recherche d'informations spécifiques dans d'énormes quantités de données numériques est devenue un véritable défi. Certains moteurs de recherche et méthodes de recherche d'informations ont abordé ce problème, mais seuls les moteurs de systèmes de recommandation ont fourni la personnalisation de l'utilisateur nécessaire dans la plupart des domaines. Dans le domaine de l'aéronautique et de la défense en particulier, la recherche d'informations et les recommandations ne sont pas si simples. La norme S1000D utilisée pour normaliser la rédaction de la documentation technique est une norme complexe basée sur XML avec de nombreuses règles et réglementations. Jusqu'à aujourd'hui, et à notre connaissance, le seul moteur de recherche disponible pour les documents S1000D est basique et repose sur la recherche du document qui a le plus d'occurrences d'une requête. Ce résultat frustrant laisse les utilisateurs avec la même liste de documents, ayant très peu de pertinence par rapport à ce qu'ils recherchent.Cette recherche, en collaboration avec Studec, pionnier de la documentation technique, se concentre sur l'amélioration et la simplification de la recherche de documents S1000D pertinents pour les utilisateurs. Nous abordons des limitations importantes dans les recherches, y compris l'importance de la relation entre le type d'utilisateur et le type de document, en plus de la signification sémantique de la requête et du document. Tout cela se fait en préservant les règles importantes qui sous-tendent la documentation, notamment l'applicabilité complexe, la limitation de l'accès aux données et l'assurance de la sécurité. Nous avons également envisagé deux versions différentes de la norme, avec des architectures différentes.La première étape consiste à prétraiter les données pour simplifier la forme des documents à utiliser dans les modèles avancés tout en conservant le sens qui les sous-tend, y compris le filtrage de l'applicabilité. Nous avons proposé un modèle qui extrait les informations importantes nécessaires, tout en préservant leur applicabilité. Nous avons ensuite converti les deux versions de l'applicabilité en une seule forme, en les filtrant à l'aide d'arbres logiques.La deuxième partie consiste à récupérer et à recommander des documents pertinents. La phase de génération de candidats consiste à filtrer l'ensemble des données par applicabilité, puis à récupérer les documents qui sont soit similaires à la requête de l'utilisateur, soit à son historique. Les documents sont ensuite reclassés en fonction de l'importance de leur type pour le travail de l'utilisateur et de leur importance par rapport à ses recherches précédentes. Nous avons utilisé le modèle XLNet pour créer des vecteurs(embeddings) de texte pour la signification sémantique pour la première phase et créé le réseau neuronal profond avec un mécanisme d'attention pour reclasser les documents extraits en fonction de leur pertinence par rapport au travail et à l'historique de l'utilisateur. Notre modèle final est le premier modèle de recherche intelligent pour la S1000D qui s'attaque non seulement aux recherches sémantiques et floues, mais qui pondère également les documents pertinents en fonction du profil et de l'historique de l'utilisateur
In the era of the Internet, the search for specific information in huge amounts of numerical data has become challenging. Some search engines and information retrieval methods have addressed this problem, yet only recommendation system engines provide the user personalization needed in most domains. In the field of aeronautics and defense particularly, information retrieval and recommendations are not that simple. The S1000D norm, used to standardize the drafting of technical documentation, is a complex XML-based norm with many rules and regulations. Until today, and to our knowledge, the only available search engine for S1000D documents is basic and relies on searching for the document that has the most occurrence of a query. This frustrating result leaves users with the same list of documents, having very little relevance to what they want.This research, in collaboration with Studec, a pioneer in technical documentation, focuses on enhancing and simplifying the retrieval of relevant S1000D documents to users. We address important limitations in the searches, including the importance of the relationship between user type and document type, in addition to the semantic meaning of the query and document. This is added while preserving the important rules behind the documentation, including the complex applicability, limiting access to data, and ensuring security. We also considered two different versions of the norm, having different architectures.The first step consists of preprocessing the data to simplify the form of the documents to be used in advanced models while keeping the meaning behind them, including the applicability filtering. We proposed a model that extracts the important information needed while preserving its applicability. We then converted the two versions of applicability into one form, filtering them using AND/OR Trees.The second part consists of retrieving and recommending relevant documents. The candidate generation phase consists of filtering the dataset by applicability and then retrieving documents that are either similar to a user's query or to his history. Documents are then reranked considering their type's importance to the user's job, and their importance to his previous searches. We used XLNet model to create text embeddings for semantic meaning for the first phase and created the deep neural network with an attention mechanism to rerank the extracted documents based on their relevance to the user’s job and history. Our final model is the first S1000D intelligent retrieving model that tackles not only semantic and fuzzy query searches but also weights the relevant documents based on the user’s profile and history
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Chamsi, Abu Quba Rana. "On enhancing recommender systems by utilizing general social networks combined with users goals and contextual awareness". Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10061/document.

Texto completo da fonte
Resumo:
Nous sommes amenés chaque jour à prendre un nombre important de décisions : quel nouveau livre lire ? Quel film regarder ce soir ou où aller ce week-end ? De plus en plus, nous utilisons les ressources en ligne pour nous aider à prendre des décisions. Comme la prise de décision est assistée par le domaine en ligne, l'utilisation de systèmes de recommandation est devenue essentielle dans la vie quotidienne. Dans le même temps, les réseaux sociaux sont devenus une partie indispensable de ce processus ; partout dans le monde on les utilise quotidiennement pour récupérer des données de personne et de sources d'information en qui on a confiance. Quand les internautes passent du temps sur les réseaux sociaux, ils laissent de précieuses informations sur eux-mêmes. Cela a attiré l'attention des chercheurs et les professionnels de nombreux domaines académiques et commerciaux. Comme le domaine de la recommandation est un domaine qui a assisté à des changements de grande ampleur attribuable à des réseaux sociaux, il y a un intérêt évident pour les systèmes de recommandation sociale. Cependant, dans la littérature de ce domaine, nous avons constaté que de nombreux systèmes de recommandation sociale ont été évalués en utilisant des réseaux sociaux spécialisés comme Epinions, Flixter et d'autres types des réseaux sociaux de recommandation, qui tendent à être composées d'utilisateurs, d'articles, de notes et de relations. Ces solutions ne peuvent pas être étendues directement à des réseaux sociaux à usage général (GPSNs) comme Facebook et Twitter, qui sont des réseaux sociaux ouverts où les utilisateurs peuvent réaliser une variété d'actions utiles pour l'aide à la recommandation
We are surrounded by decisions to take, what book to read next? What film to watch this night and in the week-end? As the number of items became tremendous the use of recommendation systems became essential in daily life. At the same time social network become indispensable in people’s daily lives; people from different countries and age groups use them on a daily basis. While people are spending time on social networks, they are leaving valuable information about them attracting researchers’ attention. Recommendation is one domain that has been affected by the social networks widespread; the result is the social recommenders’ studies. However, in the literature we’ve found that most of the social recommenders were evaluated over Epinions, flixter and other type of domains based recommender social networks, which are composed of (users, items, ratings and relations). The proposed solutions can’t be extended directly to General Purpose Social Networks (GPSN) like Facebook and Twitter which are open social networks where users can do a variety of useful actions that can be useful for recommendation, but as they can’t rate items, these information are not possible to be used in recommender systems! Moreover, evaluations are based on the known metrics like MAE, and RMSE. This can’t guarantee the satisfaction of users, neither the good quality of recommendation
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Boutet, Antoine. "Decentralizing news personalization systems". Thesis, Rennes 1, 2013. http://www.theses.fr/2013REN1S023/document.

Texto completo da fonte
Resumo:
L'évolution rapide du web a changé la façon dont l'information est créée, distribuée, évaluée et consommée. L'utilisateur est dorénavant mis au centre du web en devenant le générateur de contenu le plus prolifique. Pour évoluer dans le flot d'informations, les utilisateurs ont besoin de filtrer le contenu en fonction de leurs centres d'intérêts. Pour bénéficier de contenus personnalisés, les utilisateurs font appel aux réseaux sociaux ou aux systèmes de recommandations exploitant leurs informations privées. Cependant, ces systèmes posent des problèmes de passage à l'échelle, ne prennent pas en compte la nature dynamique de l'information et soulèvent de multiples questions d'un point de vue de la vie privée. Dans cette thèse, nous exploitons les architectures pair-à-pair pour implémenter des systèmes de recommandations pour la dissémination personnalisée des news. Une approche pair-à-pair permet un passage à l'échelle naturel et évite qu'une entité centrale contrôle tous les profils des utilisateurs. Cependant, l'absence de connaissance globale fait appel à des schémas de filtrage collaboratif qui doivent palier les informations partielles et dynamiques des utilisateurs. De plus, ce schéma de filtrage doit pouvoir respecter la vie privée des utilisateurs. La première contribution de cette thèse démontre la faisabilité d'un système de recommandation de news totalement distribué. Le système proposé maintient dynamiquement un réseau social implicit pour chaque utilisateur basé sur les opinions qu'il exprime à propos des news reçues. Les news sont disséminées au travers d'un protocole épidémique hétérogène qui (1) biaise l'orientation des cibles et (2) amplifie la dissémination de chaque news en fonction du niveau d'intérêt qu'elle suscite. Ensuite, pour améliorer la vie privée des utilisateurs, nous proposons des mécanismes d'offuscation permettant de cacher le profil exact des utilisateurs sans trop dégrader la qualité de la recommandation fournie. Enfin, nous explorons un nouveau modèle tirant parti des avantages des systèmes distribués tout en conservant une architecture centralisée. Cette solution hybride et générique permet de démocratiser les systèmes de recommandations en offrant aux fournisseurs de contenu un système de personnalisation à faible coût
The rapid evolution of the web has changed the way information is created, distributed, evaluated and consumed. Users are now at the center of the web and becoming the most prolific content generators. To effectively navigate through the stream of available news, users require tools to efficiently filter the content according to their interests. To receive personalized content, users exploit social networks and recommendation systems using their private data. However, these systems face scalability issues, have difficulties in coping with interest dynamics, and raise a multitude of privacy challenges. In this thesis, we exploit peer-to-peer networks to propose a recommendation system to disseminate news in a personalized manner. Peer-to-peer approaches provide highly-scalable systems and are an interesting alternative to Big brother type companies. However, the absence of any global knowledge calls for collaborative filtering schemes that can cope with partial and dynamic interest profiles. Furthermore, the collaborative filtering schemes must not hurt the privacy of users. The first contribution of this thesis conveys the feasibility of a fully decentralized news recommender. The proposed system constructs an implicit social network based on user profiles that express the opinions of users about the news items they receive. News items are disseminated through a heterogeneous gossip protocol that (1) biases the orientation of the dissemination, and (2) amplifies dissemination based on the level of interest in each news item. Then, we propose obfuscation mechanisms to preserve privacy without sacrificing the quality of the recommendation. Finally, we explore a novel scheme leveraging the power of the distribution in a centralized architecture. This hybrid and generic scheme democratizes personalized systems by providing an online, cost-effective and scalable architecture for content providers at a minimal investment cost
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Thollot, Raphaël. "Dynamic situation monitoring and Context-Aware BI recommendations". Phd thesis, Ecole Centrale Paris, 2012. http://tel.archives-ouvertes.fr/tel-00718917.

Texto completo da fonte
Resumo:
The amount of information generated and maintained by information systems and their users leads to the increasingly important concern of information overload. Personalized systems have thus emerged to help provide more relevant information and services to the user. In particular, recommender systems appeared in the mid 1990's and have since then generated a growing interest in both industry and academia. Besides, context-aware systems have been developed to model, capture and interpret information about the user's situation, generally in dynamic and heterogeneous environments. Decision support systems like Business Intelligence (BI) platforms also face usability challenges as the amount of information available to knowledge workers grows. Remarkably, we observe that only a small part of personalization and recommendation techniques have been used in the context of data warehouses and analysis tools. Therefore, our work aims at exploring synergies of recommender systems and context-aware systems to develop personalization and recommendation scenarios suited in a BI environment. In response to this, we develop in our work an open and modular situation management platform using a graph-based situation model. Besides, dynamic aspects are crucial to deal with context data which is inherently time-dependent. We thus define two types of active components to enable dynamic maintenance of situation graphs, activation rules and operators. In response to events which can describe users' interactions, activation rules - defined using the event-condition-action framework - are evaluated thanks to queries on underlying graphs, to eventually trigger appropriate operators. These platform and framework allow us to develop and support various recommendation and personalization scenarios. Importantly, we design a re-usable personalized query expansion component, using semantics of multi-dimensional models and usage statistics from repositories of BI documents like reports or dashboards. This component is an important part of another experimentation we realized, Text-To-Query. This system dynamically generates multi-dimensional queries to illustrate a text and support the knowledge worker in the analysis or enrichment of documents she is manipulating. Besides, we also illustrate the integration and usage of our graph repository and situation management frameworks in an open and extensible federated search project, to provide background knowledge management and personalization.
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Zarka, Raafat. "Trace-based reasoning for user assistance and recommendations". Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0147/document.

Texto completo da fonte
Resumo:
Dans le domaine des environnements numériques, un enjeu particulier consiste à construire des systèmes permettant aux utilisateurs de partager et de réutiliser leurs expériences. Cette thèse s'intéresse à la problématique générale des recommandations contextuelles pour des applications web dans un contexte particulier : tâche complexes, beaucoup de données, différents types d'utilisateurs (du débutant au professionnel), etc. Nous cherchons à fournir une assistance à l'utilisateur en prenant en compte le contexte et la dynamique des tâches que l'utilisateur effectue. On cherche à fournir des recommandations dynamiques qui sont enrichies au fur et à mesure des expériences. Pour fournir ces recommandations dynamiques, nous nous appuyons sur le Raisonnement à Partir de l'Expérience Tracée (RàPET). Dans le RàPET, les traces d'interaction constituent d'importants conteneurs de connaissances. Ces traces permettent de mieux comprendre le comportement des utilisateurs et leurs activités. Par conséquent, elles représentent également le contexte de l'activité. Les traces peuvent donc venir nourrir un assistant à partir d'expérience en lui fournissant des connaissances appropriées. Dans cette thèse, nous présentons un état de l'art sur les systèmes d'assistances dynamiques et nous rappelons les concepts généraux des systèmes à base de traces. Nous avons proposé une formalisation des traces modélisées et des processus qui permettent de manipuler ces traces. Nous avons notamment défini une méthode pour établir des mesures de similarité afin de comparer des traces modélisées. Nous avons implémenté ces propositions dans un outil appelé TStore. Cet outil permet le stockage, la transformation, la gestion et la réutilisation des traces modélisées. Ensuite, nous avons proposé un mécanisme de rejouage de traces pour permettre aux utilisateurs de revenir à un état précédent de l'application. Enfin, nous avons décrit une approche de recommandations à partir de traces. Le moteur de recommandations est alimenté par les traces d'interactions laissée par les précédents utilisateurs de l'application. Cette approche s'appuie sur les mesures de similarité proposées plus haut. Nous avons validé nos contributions théoriques à l'aide de deux applications web : SAP BusinessObjects Explorer pour l'analyse de données, et Wanaclip pour la génération semi-automatique de clips vidéos. Le mécanisme de rejouage de traces est démontré dans SAP BusinessObjects Explorer. Les recommandations à base de traces sont illustrées dans l'application Wanaclip. Dans la dernière partie du manuscrit, nous mesurons les performances de TStore et la qualité des recommandations et des mesures de similarité qu'il implémente. Nous discutons aussi des résultats du sondage que nous avons appliqué aux utilisateurs de Wanaclip pour mesurer leur satisfaction. Nos évaluations montrent que notre approche offre des recommandations satisfaisantes et un bon temps de réponse
In the field of digital environments, a particular challenge is to build systems that enable users to share and reuse their experiences. In this thesis, we are interested in the general problem of contextual recommendations for specific web applications in a particular context: complex tasks, huge amount of data, various types of users (from novice to professional), etc. We focus on providing user assistance which takes into account the context and the dynamics of users’ tasks. We seek to provide dynamic recommendations that are enriched by new experiences over time. To provide these dynamic recommendations, we make use of Trace-Based Reasoning (TBR). TBR is a recent artificial intelligence paradigm that draws its inspiration from Case-Based Reasoning. In TBR, interaction traces act as an important knowledge container. They help to understand users’ behaviors and their activities. Therefore, they reflect the context of the activity. Traces can feed an experience-based assistant with the adequate and appropriate knowledge. In this thesis, we introduce a state of the art about dynamic assistance systems and the general concepts of Trace-Based Systems. In order to provide experience-based assistance, we have made several contributions. First, we propose a formal representation of modeled traces and a description of the processes involved in their manipulation. Notably, we define a method for computing similarity measures for comparing modeled traces. These proposals have been implemented in a framework named TStore for the storage, transformation, management, and reuse of modeled traces. Next, we describe a trace replay mechanism enabling users to go back to a particular state of the application. This mechanism supports impact propagation of changes during the replay process. Last, we define a recommendation approach based on interaction traces. The recommendation engine is fed by interaction traces left by previous users of the application and stored in a manager, such as TStore. This approach facilitates knowledge sharing between communities of users and relies, among other things, on the similarity measures mentioned above. We have validated our theoretical contributions on two different web applications: SAP BusinessObjects Explorer for data reporting and Wanaclip for generating video clips. The trace replay mechanism is demonstrated in SAP BusinessObjects. Trace-Based Reasoning recommendations are illustrated with Wanaclip to guide users in both video selection, and the actions to perform in order to make quality video clips. In the last part of this manuscript, we measure the performances of TStore and the quality of recommendations and similarity measures implemented in TStore. We also discuss the results of the survey that the users of Wanaclip answered in order to measure their satisfaction. Our evaluations show that our approach offers satisfactory recommendations and good response time
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Désoyer, Adèle. "Appariement de contenus textuels dans le domaine de la presse en ligne : développement et adaptation d'un système de recherche d'information". Thesis, Paris 10, 2017. http://www.theses.fr/2017PA100119/document.

Texto completo da fonte
Resumo:
L'objectif de cette thèse, menée dans un cadre industriel, est d'apparier des contenus textuels médiatiques. Plus précisément, il s'agit d'apparier à des articles de presse en ligne des vidéos pertinentes, pour lesquelles nous disposons d'une description textuelle. Notre problématique relève donc exclusivement de l'analyse de matériaux textuels, et ne fait intervenir aucune analyse d'image ni de langue orale. Surviennent alors des questions relatives à la façon de comparer des objets textuels, ainsi qu'aux critères mobilisés pour estimer leur degré de similarité. L'un de ces éléments est selon nous la similarité thématique de leurs contenus, autrement dit le fait que deux documents doivent relater le même sujet pour former une paire pertinente. Ces problématiques relèvent du domaine de la recherche d'information (ri), dans lequel nous nous ancrons principalement. Par ailleurs, lorsque l'on traite des contenus d'actualité, la dimension temporelle est aussi primordiale et les problématiques qui l'entourent relèvent de travaux ayant trait au domaine du topic detection and tracking (tdt) dans lequel nous nous inscrivons également.Le système d'appariement développé dans cette thèse distingue donc différentes étapes qui se complètent. Dans un premier temps, l'indexation des contenus fait appel à des méthodes de traitement automatique des langues (tal) pour dépasser la représentation classique des textes en sac de mots. Ensuite, deux scores sont calculés pour rendre compte du degré de similarité entre deux contenus : l'un relatif à leur similarité thématique, basé sur un modèle vectoriel de ri; l'autre à leur proximité temporelle, basé sur une fonction empirique. Finalement, un modèle de classification appris à partir de paires de documents, décrites par ces deux scores et annotées manuellement, permet d'ordonnancer les résultats.L'évaluation des performances du système a elle aussi fait l'objet de questionnements dans ces travaux de thèse. Les contraintes imposées par les données traitées et le besoin particulier de l'entreprise partenaire nous ont en effet contraints à adopter une alternative au protocole classique d'évaluation en ri, le paradigme de Cranfield
The goal of this thesis, conducted within an industrial framework, is to pair textual media content. Specifically, the aim is to pair on-line news articles to relevant videos for which we have a textual description. The main issue is then a matter of textual analysis, no image or spoken language analysis was undertaken in the present study. The question that arises is how to compare these particular objects, the texts, and also what criteria to use in order to estimate their degree of similarity. We consider that one of these criteria is the topic similarity of their content, in other words, the fact that two documents have to deal with the same topic to form a relevant pair. This problem fall within the field of information retrieval (ir) which is the main strategy called upon in this research. Furthermore, when dealing with news content, the time dimension is of prime importance. To address this aspect, the field of topic detection and tracking (tdt) will also be explored.The pairing system developed in this thesis distinguishes different steps which complement one another. In the first step, the system uses natural language processing (nlp) methods to index both articles and videos, in order to overcome the traditionnal bag-of-words representation of texts. In the second step, two scores are calculated for an article-video pair: the first one reflects their topical similarity and is based on a vector space model; the second one expresses their proximity in time, based on an empirical function. At the end of the algorithm, a classification model learned from manually annotated document pairs is used to rank the results.Evaluation of the system's performances raised some further questions in this doctoral research. The constraints imposed both by the data and the specific need of the partner company led us to adapt the evaluation protocol traditionnal used in ir, namely the cranfield paradigm. We therefore propose an alternative solution for evaluating the system that takes all our constraints into account
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Barreau, Baptiste. "Machine Learning for Financial Products Recommendation". Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPAST010.

Texto completo da fonte
Resumo:
L’anticipation des besoins des clients est cruciale pour toute entreprise — c’est particulièrement vrai des banques d’investissement telles que BNP Paribas Corporate and Institutional Banking au vu de leur rôle dans les marchés financiers. Cette thèse s’intéresse au problème de la prédiction des intérêts futurs des clients sur les marchés financiers, et met plus particulièrement l’accent sur le développement d’algorithmes ad hoc conçus pour résoudre des problématiques spécifiques au monde financier.Ce manuscrit se compose de cinq chapitres, répartis comme suit :- Le chapitre 1 expose le problème de la prédiction des intérêts futurs des clients sur les marchés financiers. Le but de ce chapitre est de fournir aux lecteurs toutes les clés nécessaires à la bonne compréhension du reste de cette thèse. Ces clés sont divisées en trois parties : une mise en lumière des jeux de données à notre disposition pour la résolution du problème de prédiction des intérêts futurs et de leurs caractéristiques, une vue d’ensemble, non exhaustive, des algorithmes pouvant être utilisés pour la résolution de ce problème, et la mise au point de métriques permettant d’évaluer la performance de ces algorithmes sur nos jeux de données. Ce chapitre se clôt sur les défis que l’on peut rencontrer lors de la conception d’algorithmes permettant de résoudre le problème de la prédiction des intérêts futurs en finance, défis qui seront, en partie, résolus dans les chapitres suivants ;- Le chapitre 2 compare une partie des algorithmes introduits dans le chapitre 1 sur un jeu de données provenant de BNP Paribas CIB, et met en avant les difficultés rencontrées pour la comparaison d’algorithmes de nature différente sur un même jeu de données, ainsi que quelques pistes permettant de surmonter ces difficultés. Ce comparatif met en pratique des algorithmes de recommandation classiques uniquement envisagés d’un point de vue théorique au chapitre précédent, et permet d’acquérir une compréhension plus fine des différentes métriques introduites au chapitre 1 au travers de l’analyse des résultats de ces algorithmes ;- Le chapitre 3 introduit un nouvel algorithme, Experts Network, i.e., réseau d’experts, conçu pour résoudre le problème de l’hétérogénéité de comportement des investisseurs d’un marché donné au travers d’une architecture de réseau de neurones originale, inspirée de la recherche sur les mélanges d’experts. Dans ce chapitre, cette nouvelle méthodologie est utilisée sur trois jeux de données distincts : un jeu de données synthétique, un jeu de données en libre accès, et un jeu de données provenant de BNP Paribas CIB. Ce chapitre présente aussi en plus grand détail la genèse de l’algorithme et fournit des pistes pour l’améliorer ;- Le chapitre 4 introduit lui aussi un nouvel algorithme, appelé History-augmented collaborative filtering, i.e., filtrage collaboratif augmenté par historiques, qui proposes d’augmenter les approches de factorisation matricielle classiques à l’aide des historiques d’interaction des clients et produits considérés. Ce chapitre poursuit l’étude du jeu de données étudié au chapitre 2 et étend l’algorithme introduit avec de nombreuses idées. Plus précisément, ce chapitre adapte l’algorithme de façon à permettre de résoudre le problème du cold start, i.e., l’incapacité d’un système de recommandation à fournir des prédictions pour de nouveaux utilisateurs, ainsi qu’un nouveau cas d’application sur lequel cette adaptation est essayée ;- Le chapitre 5 met en lumière une collection d’idées et d’algorithmes, fructueux ou non, qui ont été essayés au cours de cette thèse. Ce chapitre se clôt sur un nouvel algorithme mariant les idées des algorithmes introduits aux chapitres 3 et 4
Anticipating clients’ needs is crucial to any business — this is particularly true for corporate and institutional banks such as BNP Paribas Corporate and Institutional Banking due to their role in the financial markets. This thesis addresses the problem of future interests prediction in the financial context and focuses on the development of ad hoc algorithms designed for solving specific financial challenges.This manuscript is composed of five chapters:- Chapter 1 introduces the problem of future interests prediction in the financial world. The goal of this chapter is to provide the reader with all the keys necessary to understand the remainder of this thesis. These keys are divided into three parts: a presentation of the datasets we have at our disposal to solve the future interests prediction problem and their characteristics, an overview of the candidate algorithms to solve this problem, and the development of metrics to monitor the performance of these algorithms on our datasets. This chapter finishes with some of the challenges that we face when designing algorithms to solve the future interests problem in finance, challenges that will be partly addressed in the following chapters;- Chapter 2 proposes a benchmark of some of the algorithms introduced in Chapter 1 on a real-word dataset from BNP Paribas CIB, along with a development on the difficulties encountered for comparing different algorithmic approaches on a same dataset and on ways to tackle them. This benchmark puts in practice classic recommendation algorithms that were considered on a theoretical point of view in the preceding chapter, and provides further intuition on the analysis of the metrics introduced in Chapter 1;- Chapter 3 introduces a new algorithm, called Experts Network, that is designed to solve the problem of behavioral heterogeneity of investors on a given financial market using a custom-built neural network architecture inspired from mixture-of-experts research. In this chapter, the introduced methodology is experimented on three datasets: a synthetic dataset, an open-source one and a real-world dataset from BNP Paribas CIB. The chapter provides further insights into the development of the methodology and ways to extend it;- Chapter 4 also introduces a new algorithm, called History-augmented Collaborative Filtering, that proposes to augment classic matrix factorization approaches with the information of users and items’ interaction histories. This chapter provides further experiments on the dataset used in Chapter 2, and extends the presented methodology with various ideas. Notably, this chapter exposes an adaptation of the methodology to solve the cold-start problem and applies it to a new dataset;- Chapter 5 brings to light a collection of ideas and algorithms, successful or not, that were experimented during the development of this thesis. This chapter finishes on a new algorithm that blends the methodologies introduced in Chapters 3 and 4
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Tintarev, Nava. "Explaining recommendations". Thesis, Available from the University of Aberdeen Library and Historic Collections Digital Resources, 2009. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?application=DIGITOOL-3&owner=resourcediscovery&custom_att_2=simple_viewer&pid=59438.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Draidi, Fady. "Recommandation Pair-à-Pair pour Communautés en Ligne à Grande Echelle". Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2012. http://tel.archives-ouvertes.fr/tel-00766963.

Texto completo da fonte
Resumo:
Les systèmes de recommandation (RS) et le pair-à-pair (P2) sont complémen-taires pour faciliter le partage de données à grande échelle: RS pour filtrer et person-naliser les requêtes des utilisateurs, et P2P pour construire des systèmes de partage de données décentralisés à grande échelle. Cependant, il reste beaucoup de difficultés pour construire des RS efficaces dans une infrastructure P2P. Dans cette thèse, nous considérons des communautés en ligne à grande échelle, où les utilisateurs notent les contenus qu'ils explorent et gardent dans leur espace de travail local les contenus de qualité pour leurs sujets d'intérêt. Notre objectif est de construire un P2P-RS efficace pour ce contexte. Nous exploitons les sujets d'intérêt des utilisateurs (extraits automatiquement des contenus et de leurs notes) et les don-nées sociales (amitié et confiance) afin de construire et maintenir un overlay P2P so-cial. La thèse traite de plusieurs problèmes. D'abord, nous nous concentrons sur la conception d'un P2P-RS qui passe à l'échelle, appelé P2Prec, en combinant les ap-proches de recommandation par filtrage collaboratif et par filtrage basé sur le contenu. Nous proposons alors de construire et maintenir un overlay P2P dynamique grâce à des protocoles de gossip. Nos résultats d'expérimentation montrent que P2Prec per-met d'obtenir un bon rappel avec une charge de requêtes et un trafic réseau accep-tables. Ensuite, nous considérons une infrastructure plus complexe afin de construire et maintenir un overlay P2P social, appelé F2Frec, qui exploite les relations sociales entre utilisateurs. Dans cette infrastructure, nous combinons les aspects filtrage par contenu et filtrage basé social, pour obtenir un P2P-RS qui fournit des résultats de qualité et fiables. A l'aide d'une évaluation de performances extensive, nous mon-trons que F2Frec améliore bien le rappel, ainsi que la confiance dans les résultats avec une surcharge acceptable. Enfin, nous décrivons notre prototype de P2P-RS que nous avons implémenté pour valider notre proposition basée sur P2Prec et F2Frec.
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

ANIBOLETE, TULIO JORGE DE A. N. DE S. "BOOSTING FOR RECOMMENDATION SYSTEMS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2008. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=13225@1.

Texto completo da fonte
Resumo:
Com a quantidade de informação e sua disponibilidade facilitada pelo uso da Internet, diversas opções são oferecidas às pessoas e estas, normalmente, possuem pouca ou quase nenhuma experiência para decidir dentre as alternativas existentes. Neste âmbito, os Sistemas de Recomendação surgem para organizar e recomendar automaticamente, através de Aprendizado de Máquina, itens interessantes aos usuários. Um dos grandes desafios deste tipo de sistema é realizar o casamento correto entre o que está sendo recomendado e aqueles que estão recebendo a recomendação. Este trabalho aborda um Sistema de Recomendação baseado em Filtragem Colaborativa, técnica cuja essência está na troca de experiências entre usuários com interesses comuns. Na Filtragem Colaborativa, os usuários pontuam cada item experimentado de forma a indicar sua relevância, permitindo que outros do mesmo grupo se beneficiem destas pontuações. Nosso objetivo é utilizar um algoritmo de Boosting para otimizar a performance dos Sistemas de Recomendação. Para isto, utilizamos uma base de dados de anúncios com fins de validação e uma base de dados de filmes com fins de teste. Após adaptações nas estratégias convencionais de Boosting, alcançamos melhorias de até 3% sobre a performance do algoritmo original.
With the amount of information and its easy availability on the Internet, many options are offered to the people and they, normally, have little or almost no experience to decide between the existing alternatives. In this scene, the Recommendation Systems appear to organize and recommend automatically, through Machine Learning, the interesting items. One of the great recommendation challenges is to match correctly what is being recommended and who are receiving the recommendation. This work presents a Recommendation System based on Collaborative Filtering, technique whose essence is the exchange of experiences between users with common interests. In Collaborative Filtering, users rate each experimented item indicating its relevance allowing the use of ratings by other users of the same group. Our objective is to implement a Boosting algorithm in order to optimize a Recommendation System performance. For this, we use a database of advertisements with validation purposes and a database of movies with testing purposes. After adaptations in the conventional Boosting strategies, improvements of 3% were reached over the original algorithm.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Akermi, Imen. "A hybrid model for context-aware proactive recommendation". Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30101/document.

Texto completo da fonte
Resumo:
L'accès aux informations pertinentes, adaptées aux besoins et au profil de l'utilisateur est un enjeu majeur dans le cadre actuel caractérisé par une prolifération massive des ressources d'information hétérogènes. Le développement d'appareils mobiles équipés de plusieurs fonctionnalités telles que la caméra, le WIFI, la géo-localisation et bien plus d'autres permettent aux systèmes mobiles de recommandation actuels d'être hautement contextualisés et pouvant fournir à l'utilisateur des informations pertinentes au bon moment quand il en a le plus besoin, sans attendre qu'il établisse une interaction avec son appareil. C'est dans ce cadre que s'insère notre travail de thèse. En effet, nous proposons une approche de recommandation contextuelle et proactive dans un environnement mobile qui permet de recommander des informations pertinentes à l'utilisateur sans attendre à ce que ce dernier initie une interaction. Un système proactif peut prendre la forme d'un guide touristique personnalisé qui se base sur la localisation et les préférences de l'utilisateur pour suggérer à ce dernier des endroits intéressants sans qu'il fournisse, sa préférence ou une requête explicite. Cela permettra de réduire les efforts, le temps et l'interaction de l'utilisateur avec son appareil mobile et de présenter les informations pertinentes au bon moment et au bon endroit. Cette approche prend aussi en considération les situations où la recommandation pourrait déranger l'utilisateur. Il s'agit d'équilibrer le processus de recommandation contre les interruptions intrusives. En effet, il existe différents facteurs et situations qui rendent l'utilisateur moins ouvert aux recommandations. Comme nous travaillons dans le contexte des appareils mobiles, nous considérons que les applications mobiles telles que la caméra, le clavier, l'agenda, etc., sont de bons représentants de l'interaction de l'utilisateur avec son appareil puisqu'ils représentent en quelque sorte la plupart des activités qu'un utilisateur pourrait entreprendre avec son appareil mobile au quotidien, comme envoyer des messages, converser, tweeter, naviguer ou prendre des photos
Just-In-Time recommender systems involve all systems able to provide recommendations tailored to the preferences and needs of users in order to help them access useful and interesting resources within a large data space. The user does not need to formulate a query, this latter is implicit and corresponds to the resources that match the user's interests at the right time. Our work falls within this framework and focuses on developing a proactive context-aware recommendation approach for mobile devices that covers many domains. It aims at recommending relevant items that match users' personal interests at the right time without waiting for the users to initiate any interaction. Indeed, the development of mobile devices equipped with persistent data connections, geolocation, cameras and wireless capabilities allows current context-aware recommender systems (CARS) to be highly contextualized and proactive. We also take into consideration to which degree the recommendation might disturb the user. It is about balancing the process of recommendation against intrusive interruptions. As a matter of fact, there are different factors and situations that make the user less open to recommendations. As we are working within the context of mobile devices, we consider that mobile applications functionalities such as the camera, the keyboard, the agenda, etc., are good representatives of the user's interaction with his device since they somehow stand for most of the activities that a user could use in a mobile device in a daily basis such as texting messages, chatting, tweeting, browsing or taking selfies and pictures
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Smaaberg, Simen Fivelstad. "Context-Aware Group Recommendation Systems". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for datateknikk og informasjonsvitenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-27328.

Texto completo da fonte
Resumo:
For a group of friends going to a concert or a festival, finding concerts that everyone is happy with can be challenging as everyone have their own preferences and wishes when it comes to music.In this thesis, a prototype of a group recommendation system for concerts is presented to solve this issue. The prototype is context sensitive; it takes a user's location and time into account when giving recommendations. The prototype implements three algorithms to recommend concerts by taking advantage of what users have listened to before: a collaborative filtering algorithm (k-Nearest Neighbor), a Matrix Factorization algorithm, and a Hybrid approach of these two.The thesis was written following the Design Science Research paradigm. The thesis covers the design and implementation of the prototype in addition to a brief review of the state of the art of the recommendation systems literature. The usability of the prototype was evaluated using the System Usability Scale, and a user centered evaluation was performed to evaluate the quality of recommendations. The results from the usability evaluation shows that users generally were satisfied with the usability of the prototype. The results from the Quality Evaluation shows that the k-Nearest Neighbor and Hybrid approach produces satisfactory results whereas the Matrix Factorization implementation is lagging a bit behind. The users testing the prototype were generally satisfied with the quality of recommendations, however further evaluation is needed to draw any final conclusions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Song, Songbo. "Advanced personalization of IPTV services". Thesis, Evry, Institut national des télécommunications, 2012. http://www.theses.fr/2012TELE0001/document.

Texto completo da fonte
Resumo:
Le monde de la TV est en cours de transformation de la télévision analogique à la télévision numérique, qui est capable de diffuser du contenu de haute qualité, offrir aux consommateurs davantage de choix, et rendre l'expérience de visualisation plus interactive. IPTV (Internet Protocol TV) présente une révolution dans la télévision numérique dans lequel les services de télévision numérique sont fournis aux utilisateurs en utilisant le protocole Internet (IP) au dessus d’une connexion haut débit. Les progrès de la technologie IPTV permettra donc un nouveau modèle de fourniture de services. Les fonctions offertes aux utilisateurs leur permettent de plus en plus d’autonomie et de plus en plus de choix. Il en est notamment ainsi de services de type ‘nTS’ (pour ‘network Time Shifting’ en anglais) qui permettent à un utilisateur de visionner un programme de télévision en décalage par rapport à sa programmation de diffusion, ou encore des services de type ‘nPVR’ (pour ‘network Personal Video Recorder’ en anglais) qui permettent d’enregistrer au niveau du réseau un contenu numérique pour un utilisateur. D'autre part, l'architecture IMS proposée dans NGN fournit une architecture commune pour les services IPTV. Malgré les progrès rapides de la technologie de télévision interactive (comprenant notamment les technologies IPTV et NGN), la personnalisation de services IPTV en est encore à ses débuts. De nos jours, la personnalisation des services IPTV se limite principalement à la recommandation de contenus et à la publicité ciblée. Ces services ne sont donc pas complètement centrés sur l’utilisateur, alors que choisir manuellement les canaux de diffusion et les publicités désirées peut représenter une gêne pour l’utilisateur. L’adaptation des contenus numériques en fonction de la capacité des réseaux et des dispositifs utilisés n’est pas encore prise en compte dans les implémentations actuelles. Avec le développement des technologies numériques, les utilisateurs sont amenés à regarder la télévision non seulement sur des postes de télévision, mais également sur des smart phones, des tablettes digitales, ou encore des PCs. En conséquence, personnaliser les contenus IPTV en fonction de l’appareil utilisé pour regarder la télévision, en fonction des capacités du réseau et du contexte de l’utilisateur représente un défi important. Cette thèse présente des solutions visant à améliorer la personnalisation de services IPTV à partir de trois aspects: 1) Nouvelle identification et authentification pour services IPTV. 2) Nouvelle architecture IPTV intégrée et comportant un système de sensibilité au contexte pour le service de personnalisation. 3) Nouveau service de recommandation de contenu en fonction des préférences de l’utilisateur et aussi des informations contextes
Internet Protocol TV (IPTV) delivers television content to users over IP-based network. Different from the traditional TV services, IPTV platforms provide users with large amount of multimedia contents with interactive and personalized services, including the targeted advertisement, on-demand content, personal video recorder, and so on. IPTV is promising since it allows to satisfy users experience and presents advanced entertainment services. On the other hand, the Next Generation Network (NGN) approach in allowing services convergence (through for instance coupling IPTV with the IP Multimedia Subsystem (IMS) architecture or NGN Non-IMS architecture) enhances users’ experience and allows for more services personalization. Although the rapid advancement in interactive TV technology (including IPTV and NGN technologies), services personalization is still in its infancy, lacking the real distinguish of each user in a unique manner, the consideration of the context of the user (who is this user, what is his preferences, his regional area, location, ..) and his environment (characteristics of the users’ devices ‘screen types, size, supported resolution, ‘‘ and networks available network types to be used by the user, available bandwidth, ..’) as well as the context of the service itself (content type and description, available format ‘HD/SD’, available language, ..) in order to provide the adequate personalized content for each user. This advanced IPTV services allows services providers to promote new services and open new business opportunities and allows network operators to make better utilization of network resources through adapting the delivered content according to the available bandwidth and to better meet the QoE (Quality of Experience) of clients. This thesis focuses on enhanced personalization for IPTV services following a user-centric context-aware approach through providing solutions for: i) Users’ identification during IPTV service access through a unique and fine-grained manner (different from the identification of the subscription which is the usual current case) based on employing a personal identifier for each user which is a part of the user context information. ii) Context-Aware IPTV service through proposing a context-aware system on top of the IPTV architecture for gathering in a dynamic and real-time manner the different context information related to the user, devices, network and service. The context information is gathered throughout the whole IPTV delivery chain considering the user domain, network provider domain, and service/content provider domain. The proposed context-aware system allows monitoring user’s environment (devices and networks status), interpreting user’s requirements and making the user’s interaction with the TV system dynamic and transparent. iii) Personalized recommendation and selection of IPTV content based on the different context information gathered and the personalization decision taken by the context-aware system (different from the current recommendation approach mainly based on matching content to users’ preferences) which in turn highly improves the users’ Quality of Experience (QoE) and enriching the offers of IPTV services
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Musial, Katarzyna. "Recommendation system for online social network". Thesis, Blekinge Tekniska Högskola, Avdelningen för programvarusystem, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4105.

Texto completo da fonte
Resumo:
Although there has been much work done in the industry and academia on developing the theory and application of social networks as well as recommender systems, the relation between these research areas is still unclear. An innovative idea, which enables to integrate these areas, and applies recommendation systems to the online social network systems, is proposed in this thesis. Recommendation systems for social networks differ from the typical kinds of recommendation solutions, since they suggest human beings to other ones rather than inanimate goods. Thus, conventional recommendation methods should be enhanced by social features of the networks and their members. This thesis presents the result of the study on the recommendation framework for virtual communities. It also contains an overview of recent approaches to recommendation systems and social networks, as well as description of the online social network systems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Al-Ghossein, Marie. "Context-aware recommender systems for real-world applications". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLT008/document.

Texto completo da fonte
Resumo:
Les systèmes de recommandation se sont révélés être des outils efficaces pour aider les utilisateurs à faire face à la surcharge informationnelle. D’importants progrès ont été réalisés dans le domaine durant les deux dernières décennies, menant en particulier à l’exploitation de l’information contextuelle pour modéliser l’aspect dynamique des utilisateurs et des articles. La définition traditionnelle du contexte, adoptée dans la plupart des systèmes de recommandation contextuels, ne répond pas à plusieurs contraintes rencontrées dans les applications du monde réel. Dans cette thèse, nous abordons les problèmes de recommandation en présence d’informations contextuelles partiellement observables et d’informations contextuelles non observables dans deux applications particulières, la recommandation d’hôtels et la recommandation en ligne, remettant en question plusieurs aspects de la définition traditionnelle du contexte, notamment l'accessibilité, la pertinence, l'acquisition et la modélisation.La première partie de la thèse étudie le problème de recommandation d’hôtels qui souffre du démarrage à froid continu, limitant la performance des approches classiques de recommandation. Le voyage n’est pas une activité fréquente et les utilisateurs ont tendance à adopter des comportements diversifiés en fonction de leurs situations spécifiques. Après une analyse du comportement des utilisateurs dans ce domaine, nous proposons de nouvelles approches de recommandation intégrant des informations contextuelles partiellement observables affectant les utilisateurs. Nous montrons comment cela contribue à améliorer la qualité des recommandations.La deuxième partie de la thèse aborde le problème de recommandation en ligne en présence de flux de données où les observations apparaissent continûment à haute fréquence. Nous considérons que les utilisateurs et les articles reposent sur des informations contextuelles non observables par le système et évoluent de façons différentes à des rythmes différents. Nous proposons alors d’effectuer de la détection active de changements et d’assurer la mise à jour des modèles en temps réel. Nous concevons de nouvelles méthodes qui s’adaptent aux changements qui apparaissent au niveau des préférences des utilisateurs et des perceptions et descriptions des articles, et montrons l’importance de la recommandation adaptative en ligne pour garantir de bonnes performances au cours du temps
Recommender systems have proven to be valuable tools to help users overcome the information overload, and significant advances have been made in the field over the last two decades. In particular, contextual information has been leveraged to model the dynamics occurring within users and items. Context is a complex notion and its traditional definition, which is adopted in most recommender systems, fails to cope with several issues occurring in real-world applications. In this thesis, we address the problems of partially observable and unobservable contexts in two particular applications, hotel recommendation and online recommendation, challenging several aspects of the traditional definition of context, including accessibility, relevance, acquisition, and modeling.The first part of the thesis investigates the problem of hotel recommendation which suffers from the continuous cold-start issue, limiting the performance of classical approaches for recommendation. Traveling is not a frequent activity and users tend to have multifaceted behaviors depending on their specific situation. Following an analysis of the user behavior in this domain, we propose novel recommendation approaches integrating partially observable context affecting users and we show how it contributes in improving the recommendation quality.The second part of the thesis addresses the problem of online adaptive recommendation in streaming environments where data is continuously generated. Users and items may depend on some unobservable context and can evolve in different ways and at different rates. We propose to perform online recommendation by actively detecting drifts and updating models accordingly in real-time. We design novel methods adapting to changes occurring in user preferences, item perceptions, and item descriptions, and show the importance of online adaptive recommendation to ensure a good performance over time
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Song, Songbo. "Advanced personalization of IPTV services". Electronic Thesis or Diss., Evry, Institut national des télécommunications, 2012. http://www.theses.fr/2012TELE0001.

Texto completo da fonte
Resumo:
Le monde de la TV est en cours de transformation de la télévision analogique à la télévision numérique, qui est capable de diffuser du contenu de haute qualité, offrir aux consommateurs davantage de choix, et rendre l'expérience de visualisation plus interactive. IPTV (Internet Protocol TV) présente une révolution dans la télévision numérique dans lequel les services de télévision numérique sont fournis aux utilisateurs en utilisant le protocole Internet (IP) au dessus d’une connexion haut débit. Les progrès de la technologie IPTV permettra donc un nouveau modèle de fourniture de services. Les fonctions offertes aux utilisateurs leur permettent de plus en plus d’autonomie et de plus en plus de choix. Il en est notamment ainsi de services de type ‘nTS’ (pour ‘network Time Shifting’ en anglais) qui permettent à un utilisateur de visionner un programme de télévision en décalage par rapport à sa programmation de diffusion, ou encore des services de type ‘nPVR’ (pour ‘network Personal Video Recorder’ en anglais) qui permettent d’enregistrer au niveau du réseau un contenu numérique pour un utilisateur. D'autre part, l'architecture IMS proposée dans NGN fournit une architecture commune pour les services IPTV. Malgré les progrès rapides de la technologie de télévision interactive (comprenant notamment les technologies IPTV et NGN), la personnalisation de services IPTV en est encore à ses débuts. De nos jours, la personnalisation des services IPTV se limite principalement à la recommandation de contenus et à la publicité ciblée. Ces services ne sont donc pas complètement centrés sur l’utilisateur, alors que choisir manuellement les canaux de diffusion et les publicités désirées peut représenter une gêne pour l’utilisateur. L’adaptation des contenus numériques en fonction de la capacité des réseaux et des dispositifs utilisés n’est pas encore prise en compte dans les implémentations actuelles. Avec le développement des technologies numériques, les utilisateurs sont amenés à regarder la télévision non seulement sur des postes de télévision, mais également sur des smart phones, des tablettes digitales, ou encore des PCs. En conséquence, personnaliser les contenus IPTV en fonction de l’appareil utilisé pour regarder la télévision, en fonction des capacités du réseau et du contexte de l’utilisateur représente un défi important. Cette thèse présente des solutions visant à améliorer la personnalisation de services IPTV à partir de trois aspects: 1) Nouvelle identification et authentification pour services IPTV. 2) Nouvelle architecture IPTV intégrée et comportant un système de sensibilité au contexte pour le service de personnalisation. 3) Nouveau service de recommandation de contenu en fonction des préférences de l’utilisateur et aussi des informations contextes
Internet Protocol TV (IPTV) delivers television content to users over IP-based network. Different from the traditional TV services, IPTV platforms provide users with large amount of multimedia contents with interactive and personalized services, including the targeted advertisement, on-demand content, personal video recorder, and so on. IPTV is promising since it allows to satisfy users experience and presents advanced entertainment services. On the other hand, the Next Generation Network (NGN) approach in allowing services convergence (through for instance coupling IPTV with the IP Multimedia Subsystem (IMS) architecture or NGN Non-IMS architecture) enhances users’ experience and allows for more services personalization. Although the rapid advancement in interactive TV technology (including IPTV and NGN technologies), services personalization is still in its infancy, lacking the real distinguish of each user in a unique manner, the consideration of the context of the user (who is this user, what is his preferences, his regional area, location, ..) and his environment (characteristics of the users’ devices ‘screen types, size, supported resolution, ‘‘ and networks available network types to be used by the user, available bandwidth, ..’) as well as the context of the service itself (content type and description, available format ‘HD/SD’, available language, ..) in order to provide the adequate personalized content for each user. This advanced IPTV services allows services providers to promote new services and open new business opportunities and allows network operators to make better utilization of network resources through adapting the delivered content according to the available bandwidth and to better meet the QoE (Quality of Experience) of clients. This thesis focuses on enhanced personalization for IPTV services following a user-centric context-aware approach through providing solutions for: i) Users’ identification during IPTV service access through a unique and fine-grained manner (different from the identification of the subscription which is the usual current case) based on employing a personal identifier for each user which is a part of the user context information. ii) Context-Aware IPTV service through proposing a context-aware system on top of the IPTV architecture for gathering in a dynamic and real-time manner the different context information related to the user, devices, network and service. The context information is gathered throughout the whole IPTV delivery chain considering the user domain, network provider domain, and service/content provider domain. The proposed context-aware system allows monitoring user’s environment (devices and networks status), interpreting user’s requirements and making the user’s interaction with the TV system dynamic and transparent. iii) Personalized recommendation and selection of IPTV content based on the different context information gathered and the personalization decision taken by the context-aware system (different from the current recommendation approach mainly based on matching content to users’ preferences) which in turn highly improves the users’ Quality of Experience (QoE) and enriching the offers of IPTV services
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Brisse, Romain. "Exploration recommendations for the investigation of security incidents". Electronic Thesis or Diss., CentraleSupélec, 2024. http://www.theses.fr/2024CSUP0001.

Texto completo da fonte
Resumo:
Ces dernières années, les analystes doivent faire face à des obstacles grandissants dans leur activité. Non seulement les données à investiguer sont hétérogènes, contiennent trop de dimensions, ou sont incomplètes, mais les attaques et attaquants se multiplient, créant une pénurie d'experts du domaine. De nombreux outils visent à soulager leur charge de travail, notamment pendant la réponse à incident, mais ce n'est pas suffisant. Les travaux de la thèse réalisée par Romain Brisse consistent à trouver des méthodes pour faciliter la phase investigative de la réponse à incident. Ils se focalisent notamment sur l'utilisation de systèmes de recommandation proposant des chemins d'exploration dans les journaux d'événements à investiguer. Les contributions de la thèse comportent deux systèmes de recommandation. Le premier, KRAKEN, utilise des connaissances expertes de la communauté cyber, permettant de reconnaître l'attaque observée et de recommander les champs les plus pertinents à explorer. La seconde contribution s'inscrit dans la continuité de la première, car ayant remarqué la difficulté pour un système de recommandation à comprendre l'intention d'un analyste, un deuxième système de recommandation (MIMIR) se base sur une modélisation de ces intentions pendant une investigation afin de recommander la marche à suivre dans la suite de celle-ci. Finalement, s'intéressant aux problématiques d'évaluation et de manque de données cyber, une dernière contribution est faite sous la forme d'un exercice (CERBERE) pendant lequel des données permettant non seulement l'évaluation mais aussi l'amélioration des systèmes de recommandation sont générées et investiguées par les participants
In recent years, cybersecurity analysts have encountered growing challenges in their field. Not only are the data they investigate heterogeneous, multidimensional or simply incomplete, but also the number of attacks and attackers is increasing, leading to a shortage of experts in the domain. While numerous tools aim to alleviate their workload, particularly during incident response, they fall short. Romain Brisse's thesis work focuses on developing methods to facilitate the investigative phase of incident response, specifically leveraging recommendation systems that propose exploration paths in event logs. The thesis contributions include two recommendation systems. The first, KRAKEN, relies on expert knowledge from the cyber community to recognize attacks in data and recommend the most relevant fields to explore in order to identify them. The second contribution aligns with the first, as it addresses the challenge of recommendation systems understanding an analyst's intent. The second system, MIMIR, is based on modelling these intentions during an investigation to suggest the subsequent investigation steps. Finally, addressing evaluation challenges and the lack of cyber data in the field, a final contribution takes the form of an exercise (CERBERE) during which data for the evaluation and improvement of recommendation systems are generated and investigated by participants
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Bambia, Meriam. "Jointly integrating current context and social influence for improving recommendation". Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30110/document.

Texto completo da fonte
Resumo:
La diversité des contenus recommandation et la variation des contextes des utilisateurs rendent la prédiction en temps réel des préférences des utilisateurs de plus en plus difficile mettre en place. Toutefois, la plupart des approches existantes n'utilisent que le temps et l'emplacement actuels séparément et ignorent d'autres informations contextuelles sur lesquelles dépendent incontestablement les préférences des utilisateurs (par exemple, la météo, l'occasion). En outre, ils ne parviennent pas considérer conjointement ces informations contextuelles avec les interactions sociales entre les utilisateurs. D'autre part, la résolution de problèmes classiques de recommandation (par exemple, aucun programme de télévision vu par un nouvel utilisateur connu sous le nom du problème de démarrage froid et pas assez d'items co-évalués par d'autres utilisateurs ayant des préférences similaires, connu sous le nom du problème de manque de donnes) est d'importance significative puisque sont attaqués par plusieurs travaux. Dans notre travail de thèse, nous proposons un modèle probabiliste qui permet exploiter conjointement les informations contextuelles actuelles et l'influence sociale afin d'améliorer la recommandation des items. En particulier, le modèle probabiliste vise prédire la pertinence de contenu pour un utilisateur en fonction de son contexte actuel et de son influence sociale. Nous avons considérer plusieurs éléments du contexte actuel des utilisateurs tels que l'occasion, le jour de la semaine, la localisation et la météo. Nous avons utilisé la technique de lissage Laplace afin d'éviter les fortes probabilités. D'autre part, nous supposons que l'information provenant des relations sociales a une influence potentielle sur les préférences des utilisateurs. Ainsi, nous supposons que l'influence sociale dépend non seulement des évaluations des amis mais aussi de la similarité sociale entre les utilisateurs. Les similarités sociales utilisateur-ami peuvent être établies en fonction des interactions sociales entre les utilisateurs et leurs amis (par exemple les recommandations, les tags, les commentaires). Nous proposons alors de prendre en compte l'influence sociale en fonction de la mesure de similarité utilisateur-ami afin d'estimer les préférences des utilisateurs. Nous avons mené une série d'expérimentations en utilisant un ensemble de donnes réelles issues de la plateforme de TV sociale Pinhole. Cet ensemble de donnes inclut les historiques d'accès des utilisateurs-vidéos et les réseaux sociaux des téléspectateurs. En outre, nous collectons des informations contextuelles pour chaque historique d'accès utilisateur-vidéo saisi par le système de formulaire plat. Le système de la plateforme capture et enregistre les dernières informations contextuelles auxquelles le spectateur est confronté en regardant une telle vidéo.Dans notre évaluation, nous adoptons le filtrage collaboratif axé sur le temps, le profil dépendant du temps et la factorisation de la matrice axe sur le réseau social comme tant des modèles de référence. L'évaluation a port sur deux tâches de recommandation. La première consiste sélectionner une liste trie de vidéos. La seconde est la tâche de prédiction de la cote vidéo. Nous avons évalué l'impact de chaque élément du contexte de visualisation dans la performance de prédiction. Nous testons ainsi la capacité de notre modèle résoudre le problème de manque de données et le problème de recommandation de démarrage froid du téléspectateur. Les résultats expérimentaux démontrent que notre modèle surpasse les approches de l'état de l'art fondes sur le facteur temps et sur les réseaux sociaux. Dans les tests des problèmes de manque de donnes et de démarrage froid, notre modèle renvoie des prédictions cohérentes différentes valeurs de manque de données
Due to the diversity of alternative contents to choose and the change of users' preferences, real-time prediction of users' preferences in certain users' circumstances becomes increasingly hard for recommender systems. However, most existing context-aware approaches use only current time and location separately, and ignore other contextual information on which users' preferences may undoubtedly depend (e.g. weather, occasion). Furthermore, they fail to jointly consider these contextual information with social interactions between users. On the other hand, solving classic recommender problems (e.g. no seen items by a new user known as cold start problem, and no enough co-rated items with other users with similar preference as sparsity problem) is of significance importance since it is drawn by several works. In our thesis work, we propose a context-based approach that leverages jointly current contextual information and social influence in order to improve items recommendation. In particular, we propose a probabilistic model that aims to predict the relevance of items in respect with the user's current context. We considered several current context elements such as time, location, occasion, week day, location and weather. In order to avoid strong probabilities which leads to sparsity problem, we used Laplace smoothing technique. On the other hand, we argue that information from social relationships has potential influence on users' preferences. Thus, we assume that social influence depends not only on friends' ratings but also on social similarity between users. We proposed a social-based model that estimates the relevance of an item in respect with the social influence around the user on the relevance of this item. The user-friend social similarity information may be established based on social interactions between users and their friends (e.g. recommendations, tags, comments). Therefore, we argue that social similarity could be integrated using a similarity measure. Social influence is then jointly integrated based on user-friend similarity measure in order to estimate users' preferences. We conducted a comprehensive effectiveness evaluation on real dataset crawled from Pinhole social TV platform. This dataset includes viewer-video accessing history and viewers' friendship networks. In addition, we collected contextual information for each viewer-video accessing history captured by the plat form system. The platform system captures and records the last contextual information to which the viewer is faced while watching such a video. In our evaluation, we adopt Time-aware Collaborative Filtering, Time-Dependent Profile and Social Network-aware Matrix Factorization as baseline models. The evaluation focused on two recommendation tasks. The first one is the video list recommendation task and the second one is video rating prediction task. We evaluated the impact of each viewing context element in prediction performance. We tested the ability of our model to solve data sparsity and viewer cold start recommendation problems. The experimental results highlighted the effectiveness of our model compared to the considered baselines. Experimental results demonstrate that our approach outperforms time-aware and social network-based approaches. In the sparsity and cold start tests, our approach returns consistently accurate predictions at different values of data sparsity
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Mild, Andreas, e Martin Natter. "A critical view on recommendation systems". SFB Adaptive Information Systems and Modelling in Economics and Management Science, WU Vienna University of Economics and Business, 2001. http://epub.wu.ac.at/1236/1/document.pdf.

Texto completo da fonte
Resumo:
The literature on recommendation systems indicates that the choice of the methodology significantly influences the quality of recommendations. The impact of the amount of available data on the performance of recommendation systems has not been systematically investigated. We study different approaches to recommendation systems using the publicly available EachMovie data set. In contrast to previous work on this data set, here a significantly higher subset is used. The effects caused by the number of customers and movies as well as their interaction with different methods are investigated. We compare two commonly used collaborative filtering approaches to several regression models using an experimental full factorial design. According to our findings, the number of customers significantly influences the performance of all approaches under study. For a large number of customers and movies, we show that simple linear regression with model selection can provide significantly better recommendations than collaborative filtering. From a managerial perspective, this gives suggestions about the selection of the model to be used depending on the amount of data available. Furthermore, the impact of an enlargement of the customer database on the quality of recommendations is shown. (author's abstract)
Series: Working Papers SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Song, Xiaodan. "Exploiting dynamic patterns for recommendation systems /". Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/5833.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Bhargav, Suvir. "Efficient Features for Movie Recommendation Systems". Thesis, KTH, Kommunikationsteori, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-155137.

Texto completo da fonte
Resumo:
User written movie reviews carry substantial amounts of movie related features such as description of location, time period, genres, characters, etc. Using natural language processing and topic modeling based techniques, it is possible to extract features from movie reviews and find movies with similar features. In this thesis, a feature extraction method is presented and the use of the extracted features in finding similar movies is investigated. We do the text pre-processing on a collection of movie reviews. We then extract topics from the collection using topic modeling techniques and store the topic distribution for each movie. Similarity metrics such as Hellinger distance is then used to find movies with similar topic distribution. Furthermore, the extracted topics are used as an explanation during subjective evaluation. Experimental results show that our extracted topics represent useful movie features and that they can be used to find similar movies efficiently.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Lokesh, Ashwini. "A Comparative Study of Recommendation Systems". TopSCHOLAR®, 2019. https://digitalcommons.wku.edu/theses/3166.

Texto completo da fonte
Resumo:
Recommendation Systems or Recommender Systems have become widely popular due to surge of information at present time and consumer centric environment. Researchers have looked into a wide range of recommendation systems leveraging a wide range of algorithms. This study investigates three popular recommendation systems in existence, Collaborative Filtering, Content-Based Filtering, and Hybrid recommendation system. The famous MovieLens dataset was utilized for the purpose of this study. The evaluation looked into both quantitative and qualitative aspects of the recommendation systems. We found that from both the perspectives, the hybrid recommendation system performs comparatively better than standalone Collaborative Filtering or Content-Based Filtering recommendation system
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Ciaramella, Alessandro. "Situation awareness in mobile recommendation systems". Thesis, IMT Alti Studi Lucca, 2011. http://e-theses.imtlucca.it/27/1/Ciaramella_phdthesis.pdf.

Texto completo da fonte
Resumo:
Nowadays, a huge quantity of resources for mobile users is made available on the most important marketplaces. Further, handheld devices can accommodate plenty of these resources, such as applications, documents and web pages, locally. Thus, to search for resources suitable for specific circumstances often requires a considerable effort and rarely brings to a completely satisfactory result. Moreover, mobile users are likely to devote only partial attention and time to the devices while using them, because the primary task is interacting with the reality, e.g. moving, chatting or even driving a car. A tool able to recommend suitable resources at the right time in each situation would be of great help for the mobile users and would make the use of the handheld devices less boring and more attractive. To this aim, new levels of granularity, together with some degree of selfawareness, are needed to assist mobile users in managing and using resources. Situation awareness can provide a powerful mechanism to identify the user needs at a certain time, enhancing the device usage. However, determining the correct user situation is not a trivial task, due to imperfect domain knowledge, uncertainty in data, and changing user behaviors. In this thesis, we propose a situation-aware resource recommender, which helps mobile users to timely locate resources proactively. Situations are determined by a semantic reasoner that exploits domain knowledge expressed in terms of ontologies and semantic rules. This reasoner works in synergy with a fuzzy engine, which is in charge of handling the vagueness of some conditions in the semantic rules, computing a certainty degree for each inferred situation. These degrees are used to rank the situations and consequently to assign a priority to the resources associated with the specific situations. Moreover, in order to adapt the situation recognizer to the specific user, the system collects data during the interaction of the user with the mobile device. This context history is exploited by genetic algorithms to learn user habits and adapt accordingly the meaning of the linguistic values used in the fuzzy engine. The proposed framework is evaluated by means of real case studies concerning resource recommendations, and experimental results show the effectiveness of the approach.
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Zhang, Yi. "Groupwise Distance Learning Algorithm for User Recommendation Systems". University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1471347509.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Robles, Sebastian. "Business intelligence in Chile, recommendations to develop local applications". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/70831.

Texto completo da fonte
Resumo:
Thesis (S.M. in Engineering and Management)--Massachusetts Institute of Technology, Engineering Systems Division, June 2011.
"February 2010." Cataloged from PDF version of thesis.
Includes bibliographical references (p. 60).
The volume of information generated from enterprise applications is growing exponentially, and the cost of storage is decreasing rapidly. In addition, cloud-based applications, mobile devices and social networks are becoming relevant sources of unstructured data that provide essential information for strategic decisions making. Therefore, with time, enterprise databases will become more valuable for business but also much harder to integrate, process and analyze. Business Intelligence software was instrumental in helping organizations to analyze information and provide reports to support business decision-making. Accordingly, BI applications evolved as enterprise information grew, hardware-processing capacities developed, and storage cost is being reduced significantly. In this paper, we will analyze the current BI world market and compare it with the Chilean market, in order to come up with business plan recommendations for local developers and systems integrators interested in capitalizing the opportunities generated by the global BI software market consolidation.
by Sebastian Robles.
S.M.in Engineering and Management
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Hinas, Toni, e Isabelle Ton. "Recommender Systems for Movie Recommendations". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239376.

Texto completo da fonte
Resumo:
Recommender systems are becoming a large and important market, with commerce moving to the internet and the ability to keep a larger stock of products, one of the biggest hurdles is to organize and show the right product to the right customer. Recommender systems aim at tailoring their products based on their customer need, by predicting how much a user would like a particular product. The recommender systems implemented in this project are within Collaborative filtering (CF) and Content-based filtering (CBF), with a final hybrid system based on combining the systems of CF and CBF. The aim is to evaluate how features such as number of latent factors, regularization factor and learning rate affect prediction accuracy for CF using Matrix factorization and compare the Root-mean square error (RMSE) for the three different systems.Collaborative filtering using matrix factorization resulted in lower RMSE than CBF and the largest factor in lowering error was learning rate. The results did indicate that CBF might perform better than CF when the user-base is small, while also having possibility of somewhat different functionality by recommending products which themselves are similar. The Hybrid recommender system had the lowest RMSE but with insignificant improvements from that of the CF method.
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Mittal, Nupur. "Data, learning and privacy in recommendation systems". Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S084/document.

Texto completo da fonte
Resumo:
Les systèmes de recommandation sont devenus une partie indispensable des services et des applications d’internet, en particulier dû à la surcharge de données provenant de nombreuses sources. Quel que soit le type, chaque système de recommandation a des défis fondamentaux à traiter. Dans ce travail, nous identifions trois défis communs, rencontrés par tous les types de systèmes de recommandation: les données, les modèles d'apprentissage et la protection de la vie privée. Nous élaborons différents problèmes qui peuvent être créés par des données inappropriées en mettant l'accent sur sa qualité et sa quantité. De plus, nous mettons en évidence l'importance des réseaux sociaux dans la mise à disposition publique de systèmes de recommandation contenant des données sur ses utilisateurs, afin d'améliorer la qualité des recommandations. Nous fournissons également les capacités d'inférence de données publiques liées à des données relatives aux utilisateurs. Dans notre travail, nous exploitons cette capacité à améliorer la qualité des recommandations, mais nous soutenons également qu'il en résulte des menaces d'atteinte à la vie privée des utilisateurs sur la base de leurs informations. Pour notre second défi, nous proposons une nouvelle version de la méthode des k plus proches voisins (knn, de l'anglais k-nearest neighbors), qui est une des méthodes d'apprentissage parmi les plus populaires pour les systèmes de recommandation. Notre solution, conçue pour exploiter la nature bipartie des ensembles de données utilisateur-élément, est évolutive, rapide et efficace pour la construction d'un graphe knn et tire sa motivation de la grande quantité de ressources utilisées par des calculs de similarité dans les calculs de knn. Notre algorithme KIFF utilise des expériences sur des jeux de données réelles provenant de divers domaines, pour démontrer sa rapidité et son efficacité lorsqu'il est comparé à des approches issues de l'état de l'art. Pour notre dernière contribution, nous fournissons un mécanisme permettant aux utilisateurs de dissimuler leur opinion sur des réseaux sociaux sans pour autant dissimuler leur identité
Recommendation systems have gained tremendous popularity, both in academia and industry. They have evolved into many different varieties depending mostly on the techniques and ideas used in their implementation. This categorization also marks the boundary of their application domain. Regardless of the types of recommendation systems, they are complex and multi-disciplinary in nature, involving subjects like information retrieval, data cleansing and preprocessing, data mining etc. In our work, we identify three different challenges (among many possible) involved in the process of making recommendations and provide their solutions. We elaborate the challenges involved in obtaining user-demographic data, and processing it, to render it useful for making recommendations. The focus here is to make use of Online Social Networks to access publicly available user data, to help the recommendation systems. Using user-demographic data for the purpose of improving the personalized recommendations, has many other advantages, like dealing with the famous cold-start problem. It is also one of the founding pillars of hybrid recommendation systems. With the help of this work, we underline the importance of user’s publicly available information like tweets, posts, votes etc. to infer more private details about her. As the second challenge, we aim at improving the learning process of recommendation systems. Our goal is to provide a k-nearest neighbor method that deals with very large amount of datasets, surpassing billions of users. We propose a generic, fast and scalable k-NN graph construction algorithm that improves significantly the performance as compared to the state-of-the art approaches. Our idea is based on leveraging the bipartite nature of the underlying dataset, and use a preprocessing phase to reduce the number of similarity computations in later iterations. As a result, we gain a speed-up of 14 compared to other significant approaches from literature. Finally, we also consider the issue of privacy. Instead of directly viewing it under trivial recommendation systems, we analyze it on Online Social Networks. First, we reason how OSNs can be seen as a form of recommendation systems and how information dissemination is similar to broadcasting opinion/reviews in trivial recommendation systems. Following this parallelism, we identify privacy threat in information diffusion in OSNs and provide a privacy preserving algorithm for the same. Our algorithm Riposte quantifies the privacy in terms of differential privacy and with the help of experimental datasets, we demonstrate how Riposte maintains the desirable information diffusion properties of a network
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Lagerqvist, Gustaf, e Anton Stålhandske. "Recommendation systems for recruitment within an educational context". Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-42902.

Texto completo da fonte
Resumo:
Alongside the evolution of the recruitment process, different types of recommendation systems have been developed. The purpose of this study is to investigate recommendation systems within educational contexts, successful implementations of recommendation system architecture patterns, and alternatives to previous experience when evaluating candidates. The study is conducted through two separate methods; A literature review with a qualitative approach and design science research methodology focused on design and development, demonstration and evaluation. The literature review shows that, for recommendation systems, a layered architecture built within a microservice ecosystem is successfully utilized and has multiple beneficial aspects such as improved scalability, maintainability and security. Through design science research methodology, this study shows a suggested approach to implementing a layered architecture in combination with KNN and hybrid filtering. To avoid the lapse of suitable candidates, caused by demanding previous experience, this study shows an alternative approach to recruitment, within an educational context, through the use of soft skills. Within the study, this approach is successfully used to evaluate and compare students, but the same approach could possibly be applied to evaluate and compare companies. Moving forward, this study could be further expanded by looking into possible biases arising as a result of using AI and choices made during this study, as well as weighting of student-attributes.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Guillou, Frédéric. "On recommendation systems in a sequential context". Thesis, Lille 3, 2016. http://www.theses.fr/2016LIL30041/document.

Texto completo da fonte
Resumo:
Cette thèse porte sur l'étude des Systèmes de Recommandation dans un cadre séquentiel, où les retours des utilisateurs sur des articles arrivent dans le système l'un après l'autre. Après chaque retour utilisateur, le système doit le prendre en compte afin d'améliorer les recommandations futures. De nombreuses techniques de recommandation ou méthodologies d'évaluation ont été proposées par le passé pour les problèmes de recommandation. Malgré cela, l'évaluation séquentielle, qui est pourtant plus réaliste et se rapproche davantage du cadre d'évaluation d'un vrai système de recommandation, a été laissée de côté. Le contexte séquentiel nécessite de prendre en considération différents aspects non visibles dans un contexte fixe. Le premier de ces aspects est le dilemme dit d'exploration vs. exploitation: le modèle effectuant les recommandations doit trouver le bon compromis entre recueillir de l'information sur les goûts des utilisateurs à travers des étapes d'exploration, et exploiter la connaissance qu'il a à l'heure actuelle pour maximiser le feedback reçu. L'importance de ce premier point est mise en avant à travers une première évaluation, et nous proposons une approche à la fois simple et efficace, basée sur la Factorisation de Matrice et un algorithme de Bandit Manchot, pour produire des recommandations appropriées. Le second aspect pouvant apparaître dans le cadre séquentiel surgit dans le cas où une liste ordonnée d'articles est recommandée au lieu d'un seul article. Dans cette situation, le feedback donné par l'utilisateur est multiple: la partie explicite concerne la note donnée par l'utilisateur concernant l'article choisi, tandis que la partie implicite concerne les articles cliqués (ou non cliqués) parmi les articles de la liste. En intégrant les deux parties du feedback dans un modèle d'apprentissage, nous proposons une approche basée sur la Factorisation de Matrice, qui peut recommander de meilleures listes ordonnées d'articles, et nous évaluons cette approche dans un contexte séquentiel particulier pour montrer son efficacité
This thesis is dedicated to the study of Recommendation Systems under a sequential setting, where the feedback given by users on items arrive one after another in the system. After each feedback, the system has to integrate it and try to improve future recommendations. Many techniques or evaluation methods have already been proposed to study the recommendation problem. Despite that, such sequential setting, which is more realistic and represent a closer framework to a real Recommendation System evaluation, has surprisingly been left aside. Under a sequential context, recommendation techniques need to take into consideration several aspects which are not visible for a fixed setting. The first one is the exploration-exploitation dilemma: the model making recommendations needs to find a good balance between gathering information about users' tastes or items through exploratory recommendation steps, and exploiting its current knowledge of the users and items to try to maximize the feedback received. We highlight the importance of this point through the first evaluation study and propose a simple yet efficient approach to make effective recommendation, based on Matrix Factorization and Multi-Armed Bandit algorithms. The second aspect emphasized by the sequential context appears when a list of items is recommended to the user instead of a single item. In such a case, the feedback given by the user includes two parts: the explicit feedback as the rating, but also the implicit feedback given by clicking (or not clicking) on other items of the list. By integrating both feedback into a Matrix Factorization model, we propose an approach which can suggest better ranked list of items, and we evaluate it in a particular setting
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Tsigkari, Dimitra. "Algorithms and Cooperation Models in Caching and Recommendation Systems". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS210.

Texto completo da fonte
Resumo:
Dans le contexte des services de streaming vidéo à la demande, la mise en cache et la politique de recommandation ont un impact sur la satisfaction des utilisateurs, ainsi que des implications financières pour le fournisseur de contenu (CP) et le fournisseur du réseau de diffusion de contenu (CDN). Bien que la mise en cache et les recommandations soient traditionnellement décidées indépendamment les unes des autres, l'idée de concevoir ensemble ces décisions pourrait minimiser les coûts de distribution et le trafic Internet. Cette thèse suit cette direction d'exploitation de la codépendance de la mise en cache et des recommandations. Dans un premier temps, nous étudions le problème de l'optimisation simultanée de la mise en cache et des recommandations dans le but de maximiser l'expérience globale des utilisateurs. Cette optimisation simultanée est possible pour les CPs qui possèdent leur propre CDN dans les architectures d’aujourd’hui et du futur. Bien que nous montrions que ce problème est NP-difficile, notre analyse nous permet de fournir un algorithme d'approximation. Nous étudions ensuite le cas où les recommandations et la mise en cache sont décidées par deux entités distinctes (le CP et le CDN, respectivement) qui veulent maximiser leurs profits individuels. Sur la base d'outils de la théorie des jeux et de la théorie de l'optimisation, nous proposons un nouveau mécanisme de coopération entre les deux entités sur la base de recommandations. Cette coopération leur permet de concevoir une politique de recommandation qui favorise les contenus en cache et qui assure une répartition équitable des gains qui en résultent
In the context of on-demand video streaming services, both the caching allocation and the recommendation policy have an impact on the user satisfaction, and financial implications for the Content Provider (CP) and the Content Delivery Network (CDN). Although caching and recommendations are traditionally decided independently of each other, the idea of co-designing these decisions can lead to lower delivery costs and to less traffic at the backbone Internet. This thesis follows this direction of exploiting the interplay of caching and recommendations in the setting of streaming services. It approaches the subject through the perspective of the users, and then from a network-economical point of view. First, we study the problem of jointly optimizing caching and recommendations with the goal of maximizing the overall experience of the users. This joint optimization is possible for CPs that simultaneously act as CDN owners in today’s or future architectures. Although we show that this problem is NP-hard, through a careful analysis, we provide the first approximation algorithm for the joint problem. We then study the case where recommendations and caching are decided by two separate entities (the CP and the CDN, respectively) who want to maximize their individual profits. Based on tools from game theory and optimization theory, we propose a novel cooperation mechanism between the two entities on the grounds of recommendations. This cooperation allows them to design a cache-friendly recommendation policy that ensures a fair split of the resulting gains
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Söderkvist, Nils. "Recommendation system for job coaches". Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446792.

Texto completo da fonte
Resumo:
For any unemployed person in Sweden that is looking for a job, the most common place they can turn to is the Swedish Public Employment Service, also known as Arbetsförmedlingen, where they can register to get help with the job search process. Occasionally, in order to land an employment, the person might require extra guidance and education, Arbetsförmedlingen outsource this education to external companies called providers where each person gets assigned a coach that can assist them in achieving an employment quicker. Given the current labour market data, can the data be used to help optimize and speed up the job search process? To try and help optimize the process, the labour market data was inserted into a graph database, using the database, a recommendation system was built which uses different methods to perform each recommendation. The recommendations can be used by a provider to assist them in assigning coaches to newly registered participants as well as recommending activities. The performance of each recommendation method was evaluated using a statistic measure. While the user-created methods had acceptable performance, the overall best performing recommendation method was collaborative filtering. However, there are definitely some potential for the user-created method, and given some additional testing and tuning, the methods can surely outperform the collaborative filtering method. In addition, expanding the database by adding more data would positively affect the recommendations as well.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Rodas, Britez Marcelo Dario. "A Content-Based Recommendation System for Leisure Activities". Doctoral thesis, Università degli studi di Trento, 2019. http://hdl.handle.net/11572/242958.

Texto completo da fonte
Resumo:
People’s selection of leisure activities is a complex choice because of implicit human factors and explicit environmental factors. Satisfactory participation in leisure activities is an important task since keeping a regular active lifestyle can help to maintain and improve the wellbeing of people. Technology could help in selecting the most appropriate activities by designing and implementing activities, collecting people profiles and their preferences relations. In fact, recommendation systems, have been successfully used in the last years in similar tasks with different types of recommendation systems. This thesis aims at the design, implementation, and evaluation of recommendation systems that could help us to better understand the complex choice of selecting leisure activities. In this work, we first define an evaluation framework for different recommendations systems. Then we compare their performances using different evaluation metrics. Thus, we explore and try to better understand the user’s preferences over leisure activities. After, having a comprehensive analysis of modelling recommended items and leisure activities, we also design and implement a content-based leisure activity recommendation system to make use of a taxonomy of activities. Moreover, in the course of our research, we have collected and evaluated two datasets obtained one from the Meetup social network and the other from crowd-workers and made them available as open data sources for further evaluation in the recommendation system research community.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Rodas, Britez Marcelo Dario. "A Content-Based Recommendation System for Leisure Activities". Doctoral thesis, Università degli studi di Trento, 2019. http://hdl.handle.net/11572/242958.

Texto completo da fonte
Resumo:
People’s selection of leisure activities is a complex choice because of implicit human factors and explicit environmental factors. Satisfactory participation in leisure activities is an important task since keeping a regular active lifestyle can help to maintain and improve the wellbeing of people. Technology could help in selecting the most appropriate activities by designing and implementing activities, collecting people profiles and their preferences relations. In fact, recommendation systems, have been successfully used in the last years in similar tasks with different types of recommendation systems. This thesis aims at the design, implementation, and evaluation of recommendation systems that could help us to better understand the complex choice of selecting leisure activities. In this work, we first define an evaluation framework for different recommendations systems. Then we compare their performances using different evaluation metrics. Thus, we explore and try to better understand the user’s preferences over leisure activities. After, having a comprehensive analysis of modelling recommended items and leisure activities, we also design and implement a content-based leisure activity recommendation system to make use of a taxonomy of activities. Moreover, in the course of our research, we have collected and evaluated two datasets obtained one from the Meetup social network and the other from crowd-workers and made them available as open data sources for further evaluation in the recommendation system research community.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Menk, Dos Santos Alan. "Personality-based recommendation: human curiosity applied to recommendation systems using implicit information from social networks". Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/114798.

Texto completo da fonte
Resumo:
En el día a día, las personas suelen confiar en recomendaciones, tradicionalmente aportadas por otras personas (familia, amigos, etc.) para sus decisiones más variadas. En el mundo digital esto no es diferente, dado que los sistemas de recomendación están presentes en todas partes y de modo transparente. El principal objetivo de estos sistemas es el de ayudar en el proceso de toma de decisiones, generando recomendaciones de su interés y basadas en sus gustos. Dichas recomendaciones van desde productos en sitios web de comercio electrónico, como libros o lugares a visitar, además de qué comer o cuánto tiempo uno debe caminar al día para tener una vida sana, con quién salir o a quién seguir en las redes sociales. Esta es un área en ascensión. Por un lado, tenemos cada vez más usuarios en internet cuya vida está digitalizada, dado que lo que se hace en el "mundo real" está representado en cierto modo en el "mundo digital". Por otro lado, sufrimos una sobrecarga de información, que puede mitigarse mediante el uso de un sistema de recomendación. Sin embargo, estos sistemas también enfrentan algunos problemas, como el problema del arranque en frío y su necesidad de ser cada vez más "humanos", "personalizados" y "precisos" para satisfacer las exigencias de usuarios y empresas. En este desafiante escenario, los sistemas de recomendación basados en la personalidad se están estudiando cada vez más, ya que son capaces de enfrentar esos problemas. Algunos proyectos recientes proponen el uso de la personalidad humana en los recomendadores, ya sea en su conjunto o individualmente por rasgos. Esta tesis está dedicada a este nuevo área de recomendación basada en la personalidad, centrándose en uno de sus rasgos más importantes, la curiosidad. Además, para explotar la información ya existente en internet, obtendremos de forma implícita información de las redes sociales. Por lo tanto, este trabajo tiene como objetivo proporcionar una mejor experiencia al usuario final a través de un nuevo enfoque que ofrece una alternativa a algunos de los retos identificados en los sistemas de recomendación basados en la personalidad. Entre estas mejoras, el uso de las redes sociales para alimentar los sistemas de recomendación reduce el problema del arranque en frío y, al mismo tiempo, proporciona datos valiosos para la predicción de la personalidad humana. Por otro lado, la curiosidad no ha sido utilizada por ninguno de los sistemas de recomendación estudiados; casi todos han usado la personalidad general de un individuo a través de los Cinco Grandes rasgos de la personalidad. Sin embargo, los estudios psicológicos confirman que la curiosidad es un rasgo relevante en el proceso de elegir un item, cuestión directamente relacionada con los sistemas de recomendación. En resumen, creemos que un sistema de recomendación que mida implícitamente la curiosidad y la utilice en el proceso de recomendar nuevos ítems, especialmente en el sector turístico, podría claramente mejorar la capacidad de estos sistemas en términos de precisión, serendipidad y novedad, permitiendo a los usuarios obtener niveles positivos de satisfacción con las recomendaciones. Esta tesis realiza un estudio exhaustivo del estado del arte, donde destacamos trabajos sobre sistemas de recomendación, la personalidad humana desde el punto de vista de la psicología tradicional y positiva y finalmente cómo se combinan ambos aspectos. Luego, desarrollamos una aplicación en línea capaz de extraer implícitamente información del perfil de usuario en una red social, generando predicciones de uno o más rasgos de su personalidad. Finalmente, desarrollamos el sistema CURUMIM, capaz de generar recomendaciones en línea con diferentes propiedades, combinando la curiosidad y algunas características sociodemográficas (como el nivel de educación) extraídas de Facebook. El sistema ha sido probado y evaluado en el contexto turístico por usuarios r
En el dia a dia, les persones solen confiar en recomanacions, tradicionalment aportades per altres persones (família, amics, etc.) per a les seues decisions més variades. En el món digital això no és diferent, atès que els sistemes de recomanació estan presents a tot arreu i de manera transparent. El principal objectiu d'aquests sistemes és el d'ajudar en el procés de presa de decisions, generant recomanacions del seu interès i basades en els seus gustos. Aquestes recomanacions van des de productes en pàgines web de comerç electrònic, com a llibres o llocs a visitar, a més de què menjar o quant temps una persona ha de caminar al dia per a tindre una vida sana, amb qui eixir o a qui seguir en les xarxes socials. Aquesta és una àrea en ascensió. D'una banda, tenim cada vegada més usuaris en internet la vida de les quals està digitalitzada, atès que el que es fa en el "món real" està representat en certa manera en el "món digital". D'altra banda, patim una sobrecàrrega d'informació, que pot mitigar-se mitjançant l'ús d'un sistema de recomanació. No obstant això, aquests sistemes també enfronten alguns problemes, com el problema de l'arrencada en fred i la seua necessitat de ser cada vegada més "humans", "personalitzats" i "precisos" per a satisfer les exigències d'usuaris i empreses. En aquest desafiador escenari, els sistemes de recomanació basats en la personalitat s'estan estudiant cada vegada més, ja que són capaços d'enfrontar eixos problemes. Alguns projectes recents proposen l'ús de la personalitat humana en els recomendadors, ja siga en el seu conjunt o individualment per trets. Aquesta tesi està dedicada a aquest nou àrea de recomanació basada en la personalitat, centrant-se en un dels seus trets més importants, la curiositat. A més, per a explotar la informació ja existent en internet, obtindrem de forma implícita informació de les xarxes socials. Per tant, aquest treball té com a objectiu proporcionar una millor experiència a l'usuari final a través d'un nou enfocament que ofereix una alternativa a alguns dels reptes identificats en els sistemes de recomanació basats en la personalitat. Entre aquestes millores, l'ús de les xarxes socials per a alimentar els sistemes de recomanació redueix el problema de l'arrencada en fred i, al mateix temps, proporciona dades valuoses per a la predicció de la personalitat humana. D'altra banda, la curiositat no ha sigut utilitzada per cap dels sistemes de recomanació estudiats; quasi tots han usat la personalitat general d'un individu a través dels Cinc Grans trets de la personalitat. No obstant això, els estudis psicològics confirmen que la curiositat és un tret rellevant en el procés de triar un item, qüestió directament relacionada amb els sistemes de recomanació. En resum, creiem que un sistema de recomanació que mesure implícitament la curiositat i la utilitze en el procés de recomanar nous ítems, especialment en el sector turístic, podria clarament millorar la capacitat d'aquests sistemes en termes de precisió, sorpresa i novetat, permetent als usuaris obtindre nivells positius de satisfacció amb les recomanacions. Aquesta tesi realitza un estudi exhaustiu de l'estat de l'art, on destaquem treballs sobre sistemes de recomanació, la personalitat humana des del punt de vista de la psicologia tradicional i positiva i finalment com es combinen tots dos aspectes. Després, desenvolupem una aplicació en línia capaç d'extraure implícitament informació del perfil d'usuari en una xarxa social, generant prediccions d'un o més trets de la seua personalitat. Finalment, desenvolupem el sistema CURUMIM, capaç de generar recomanacions en línia amb diferents propietats, combinant la curiositat i algunes característiques sociodemogràfiques (com el nivell d'educació) extretes de Facebook. El sistema ha sigut provat i avaluat en el context turístic per usuaris reals. Els resultats demostren la seua capacitat per
In daily life, people usually rely on recommendations, traditionally given by other people (family, friends, etc.) for their most varied decisions. In the digital world, this is not different, given that recommender systems are present everywhere in such a way that we no longer realize. The main goal of these systems is to assist users in the decision-making process, generating recommendations that are of their interest and based on their tastes. These recommendations range from products in e-commerce websites, like books to read or places to visit to what to eat or how long one should walk a day to have a healthy life, who to date or who one should follow on social networks. And this is an increasing area. On the one hand, we have more and more users on the internet whose life is somewhat digitized, given than what one does in the "real world" is represented in a certain way in the "digital world". On the other hand, we suffer from information overload, which can be mitigated by the use of recommendation systems. However, these systems also face some problems, such as the cold start problem and their need to be more and more "human", "personalised" and "precise" in order to meet the yearning of users and companies. In this challenging scenario, personality-based recommender systems are being increasingly studied, since they are able to face these problems. Some recent projects have proposed the use of the human personality in recommenders, whether as a whole or individually by facet in order to meet those demands. Therefore, this thesis is devoted to this new area of personality-based recommendation, focusing on one of its most important traits, the curiosity. Additionally, in order to exploit the information already present on the internet, we will implicitly obtain information from social networks. Thus, this work aims to build a better experience for the end user through a new approach that offers an option for some of the gaps identified in personality-based recommendation systems. Among these gap improvements, the use of social networks to feed the recommender systems soften the cold start problem and, at the same time, it provides valuable data for the prediction of the human personality. Another found gap is that the curiosity was not used by any of the studied recommender systems; almost all of them have used the overall personality of an individual through the Big Five personality traits. However, psychological studies confirm that the curiosity is a relevant trait in the process of choosing an item, which is directly related to recommendation systems. In summary, we believe that a recommendation system that implicitly measures the curiosity and uses it in the process of recommending new items, especially in the tourism sector, could clearly improve the capacity of these systems in terms of accuracy, serendipity and novelty, allowing users to obtain positive levels of satisfaction with the recommendations. This thesis begins with an exhaustive study of the state of the art, where we highlight works about recommender systems, the human personality from the point of view of traditional and positive psychology and how these aspects are combined. Then, we develop an online application capable of implicitly extracting information from the user profile in a social network, thus generating predictions of one or more personality traits. Finally, we develop the CURUMIM system, able to generate online recommendations with different properties, combining the curiosity and some sociodemographic characteristics (such as level of education) extracted from Facebook. The system is tested and assessed within the tourism context by real users. The results demonstrate its ability to generate novel and serendipitous recommendations, while maintaining a good level of accuracy, independently of the degree of curiosity of the users.
Menk Dos Santos, A. (2018). Personality-based recommendation: human curiosity applied to recommendation systems using implicit information from social networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/114798
TESIS
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Bhuiyan, Touhid. "Trust-based automated recommendation making". Thesis, Queensland University of Technology, 2011. https://eprints.qut.edu.au/49168/1/Touhid_Bhuiyan_Thesis.pdf.

Texto completo da fonte
Resumo:
Recommender systems are one of the recent inventions to deal with ever growing information overload in relation to the selection of goods and services in a global economy. Collaborative Filtering (CF) is one of the most popular techniques in recommender systems. The CF recommends items to a target user based on the preferences of a set of similar users known as the neighbours, generated from a database made up of the preferences of past users. With sufficient background information of item ratings, its performance is promising enough but research shows that it performs very poorly in a cold start situation where there is not enough previous rating data. As an alternative to ratings, trust between the users could be used to choose the neighbour for recommendation making. Better recommendations can be achieved using an inferred trust network which mimics the real world "friend of a friend" recommendations. To extend the boundaries of the neighbour, an effective trust inference technique is required. This thesis proposes a trust interference technique called Directed Series Parallel Graph (DSPG) which performs better than other popular trust inference algorithms such as TidalTrust and MoleTrust. Another problem is that reliable explicit trust data is not always available. In real life, people trust "word of mouth" recommendations made by people with similar interests. This is often assumed in the recommender system. By conducting a survey, we can confirm that interest similarity has a positive relationship with trust and this can be used to generate a trust network for recommendation. In this research, we also propose a new method called SimTrust for developing trust networks based on user's interest similarity in the absence of explicit trust data. To identify the interest similarity, we use user's personalised tagging information. However, we are interested in what resources the user chooses to tag, rather than the text of the tag applied. The commonalities of the resources being tagged by the users can be used to form the neighbours used in the automated recommender system. Our experimental results show that our proposed tag-similarity based method outperforms the traditional collaborative filtering approach which usually uses rating data.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Coulibaly, Adama. "Décision de groupe, Aide à la facilitation : ajustement de procédure de vote selon le contexte de décision". Thesis, Toulouse 1, 2019. http://www.theses.fr/2019TOU10011/document.

Texto completo da fonte
Resumo:
La facilitation est un élément central dans une prise de décision de groupe surtout en faisant l'usage des outils de nouvelle technologie. Le facilitateur, pour rendre sa tâche facile, a besoin des solutions de vote pour départager les décideurs afin d'arriver à des conclusions dans une prise de décision. Une procédure de vote consiste à déterminer à partir d’une méthode le vainqueur ou le gagnant d’un vote. Il y a plusieurs procédures de vote dont certaines sont difficiles à expliquer et qui peuvent élire différents candidats/options/alternatives proposées. Le meilleur choix est celui dont son élection est acceptée facilement par le groupe. Le vote dans la théorie du choix social est une discipline largement étudiée dont les principes sont souvent complexes et difficiles à expliquer lors d’une réunion de prise de décision. Les systèmes de recommandation sont de plus en plus populaires dans tous les domaines de science. Ils peuvent aider les utilisateurs qui n’ont pas suffisamment d’expérience ou de compétence nécessaires pour évaluer un nombre élevé de procédures de vote existantes. Un système de recommandation peut alléger le travail du facilitateur dans la recherche d’une procédure vote adéquate en fonction du contexte de prise de décisions. Le sujet de ce travail de recherche s’inscrit dans le champ de l’aide à la décision de groupe. La problématique consiste à contribuer au développement d’un système d’aide à la décision de groupe (Group Decision Support System : GDSS). La solution devra s’intégrer dans la plateforme logicielle actuellement développée à l’IRIT GRUS : GRoUp Support
Facilitation is a central element in decision-making, especially when using new technology tools. The facilitator, to make his task easy, needs voting solutions to decide between decision-makers in order to reach conclusions in a decision-making process. A voting procedure consists of determining from a method the winner of a vote. There are several voting procedures, some of which are difficult to explain and which may elect different candidate/options/alternatives proposed. The best choice is the one whose election is easily accepted by the group. Voting in social choice theory is a widely studied discipline whose principles are often complex and difficult to explain at a decision-making meeting. Recommendation systems are becoming more and more popular in all fields of science. They can help users who do not have sufficient experience or competence to evaluate large numbers of existing voting procedures. A recommendation system can lighten the facilitator's workload in finding an appropriate voting procedure based on the decision-making context. The objective of this research work is to design such recommendation system. This work is in the field of group decision support. The issue is to contribute to the development of a Group Decision Support System (GDSS). The solution will have to be integrated into the software platform currently being developed at IRITGRUS: GRoUp Support
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Giannakas, Theodoros. "Joint modeling and optimization of caching and recommendation systems". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS317.

Texto completo da fonte
Resumo:
La mise en cache du contenu au plus près des utilisateurs a été proposée comme un scénario gagnant-gagnant afin d'offrir de meilleurs tarifs aux utilisateurs tout en économisant sur les coûts des opérateurs. Néanmoins, la mise en cache peut réussir si les fichiers mis en cache parviennent à attirer un grand nombre de demandes. À cette fin, nous profitons du fait qu'Internet est de plus en plus axé sur le divertissement et proposons de lier les systèmes de recommandation et la mise en cache afin d'augmenter le taux de réussite. Nous modélisons un utilisateur qui demande plusieurs contenus à partir d'un réseau équipé d'un cache. Nous proposons un cadre de modélisation pour un tel utilisateur qui est basé sur des chaînes de Markov et s'écarte de l'IRM. Nous explorons différentes versions du problème et dérivons des solutions optimales et sous-optimales selon le cas que nous examinons. Enfin, nous examinons la variation du problème de mise en cache prenant en compte la recommandation et proposons des algorithmes pratiques assortis de garanties de performances. Pour les premiers, les résultats indiquent qu'il y a des gains élevés pour les opérateurs et que les schémas myopes sans vision sont fortement sous-optimaux. Alors que pour ce dernier, nous concluons que les décisions de mise en cache peuvent considérablement s'améliorer en tenant compte des recommandations sous-jacentes
Caching content closer to the users has been proposed as a win-win scenario in order to offer better rates to the users while saving costs from the operators. Nonetheless, caching can be successful if the cached files manage to attract a lot of requests. To this end, we take advantage of the fact that the internet is becoming more entertainment oriented and propose to bind recommendation systems and caching in order to increase the hit rate. We model a user who requests multiple contents from a network which is equipped with a cache. We propose a modeling framework for such a user which is based on Markov chains and depart from the IRM. We delve into different versions of the problem and derive optimal and suboptimal solutions according to the case we examine. Finally we examine the variation of the Recommendation aware caching problem and propose practical algorithms that come with performance guarantees. For the former, the results indicate that there are high gains for the operators and that myopic schemes without a vision, are heavily suboptimal. While for the latter, we conclude that the caching decisions can significantly improve when taking into consideration the underlying recommendations
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Osmanli, Osman Nuri. "A Singular Value Decomposition Approach For Recommendation Systems". Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612129/index.pdf.

Texto completo da fonte
Resumo:
Data analysis has become a very important area for both companies and researchers as a consequence of the technological developments in recent years. Companies are trying to increase their profit by analyzing the existing data about their customers and making decisions for the future according to the results of these analyses. Parallel to the need of companies, researchers are investigating different methodologies to analyze data more accurately with high performance. Recommender systems are one of the most popular and widespread data analysis tools. A recommender system applies knowledge discovery techniques to the existing data and makes personalized product recommendations during live customer interaction. However, the huge growth of customers and products especially on the internet, poses some challenges for recommender systems, producing high quality recommendations and performing millions of recommendations per second. In order to improve the performance of recommender systems, researchers have proposed many different methods. Singular Value Decomposition (SVD) technique based on dimension reduction is one of these methods which produces high quality recommendations, but has to undergo very expensive matrix calculations. In this thesis, we propose and experimentally validate some contributions to SVD technique which are based on the user and the item categorization. Besides, we adopt tags to classical 2D (User-Item) SVD technique and report the results of experiments. Results are promising to make more accurate and scalable recommender systems.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia