Artigos de revistas sobre o tema "Système CRISPR-Cas9"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Système CRISPR-Cas9".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Ballouhey, Océane, Marc Bartoli e Nicolas Levy. "CRISP(R)ation musculaire". médecine/sciences 36, n.º 4 (abril de 2020): 358–66. http://dx.doi.org/10.1051/medsci/2020081.
Texto completo da fonteCroteau, Félix R., Geneviève M. Rousseau e Sylvain Moineau. "Le système CRISPR-Cas". médecine/sciences 34, n.º 10 (outubro de 2018): 813–19. http://dx.doi.org/10.1051/medsci/2018215.
Texto completo da fonteCohen, O., P. Maru, Q. Liang e J. Saeij. "Toxoplasma : Identification d'une protéine impliquée dans l'échappement immunitaire grâce au système CRISPR/Cas9". Médecine et Maladies Infectieuses Formation 3, n.º 2 (junho de 2024): S107. http://dx.doi.org/10.1016/j.mmifmc.2024.04.316.
Texto completo da fonteBrusson, Megane, e Annarita Miccio. "Une approche CRISPR/Cas pour traiter les β-hémoglobinopathies". médecine/sciences 41, n.º 1 (janeiro de 2025): 33–39. https://doi.org/10.1051/medsci/2024191.
Texto completo da fonteDekeyzer, Blanche, Marie Hoareau e Gabriel Laghlali. "Utiliser le système CRISPR/Cas9 SAM (synergic activation mediator) pour identifier des facteurs de restriction antiviraux par criblage génomique". médecine/sciences 34, n.º 5 (maio de 2018): 401–3. http://dx.doi.org/10.1051/medsci/20183405010.
Texto completo da fonteChaudhry, Ahsen Tahir, e Daud Akhtar. "Gene Therapy and Modification as a Therapeutic Strategy for Cancer". University of Ottawa Journal of Medicine 6, n.º 1 (11 de maio de 2016): 44–48. http://dx.doi.org/10.18192/uojm.v6i1.1564.
Texto completo da fonteReboud-Ravaux, Michèle. "Dégradation induite des protéines par des molécules PROTAC et stratégies apparentées : développements à visée thérapeutique". Biologie Aujourd’hui 215, n.º 1-2 (2021): 25–43. http://dx.doi.org/10.1051/jbio/2021007.
Texto completo da fonteKang Yue, 康玥, 廖雪瑶 Liao Xueyao, 谭向宇 Tan Xiangyu, 郭萍 Guo Ping e 田训 Tian Xun. "CRISPR/Cas9系统活细胞成像技术进展(特邀)". Infrared and Laser Engineering 51, n.º 11 (2022): 20220597. http://dx.doi.org/10.3788/irla20220597.
Texto completo da fonteKwon, Deok-Ho, Joong-Hee Park, Deok Yeol Jeong, Jae-Bum Park, Dong-Min Park, Kyoung-Gon Kang, Seo-Young Choi, Soo Rin Kim e Suk-Jin Ha. "Application of Genome Editing Method on Kluyveromyces marxianus 17694-DH2 using CRISPR-Cas9 System for Enhanced Xylose Utilization". KSBB Journal 34, n.º 4 (31 de dezembro de 2019): 243–47. http://dx.doi.org/10.7841/ksbbj.2019.34.4.243.
Texto completo da fonteKlein, Nathalie, Selina Rust e Lennart Randau. "CRISPR-Cas-Systeme der Klasse 1: Genome Engineering und Silencing". BIOspektrum 28, n.º 4 (junho de 2022): 370–73. http://dx.doi.org/10.1007/s12268-022-1775-9.
Texto completo da fonteKhan, Sehrish, Muhammad Mahmood, Sajjad Rahman, Farzana Rizvi e Aftab Ahmad. "Evaluation of the CRISPR/Cas9 system for the development of resistance against Cotton leaf curl virus in model plants". Plant Protection Science 56, No. 3 (11 de junho de 2020): 154–62. http://dx.doi.org/10.17221/105/2019-pps.
Texto completo da fonteWu, Wenyi, Luosheng Tang, Patricia A. D'Amore e Hetian Lei. "Application of CRISPR-Cas9 in eye disease". Experimental Eye Research 161 (agosto de 2017): 116–23. http://dx.doi.org/10.1016/j.exer.2017.06.007.
Texto completo da fonteBurnight, Erin R., Joseph C. Giacalone, Jessica A. Cooke, Jessica R. Thompson, Laura R. Bohrer, Kathleen R. Chirco, Arlene V. Drack et al. "CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration". Progress in Retinal and Eye Research 65 (julho de 2018): 28–49. http://dx.doi.org/10.1016/j.preteyeres.2018.03.003.
Texto completo da fonteSchmierer, Bernhard, Sandeep K. Botla, Jilin Zhang, Mikko Turunen, Teemu Kivioja e Jussi Taipale. "CRISPR/Cas9 screening using unique molecular identifiers". Molecular Systems Biology 13, n.º 10 (outubro de 2017): 945. http://dx.doi.org/10.15252/msb.20177834.
Texto completo da fonteDeğirmenci, Laura, Dietmar Geiger, Fábio Luiz Rogé Ferreira, Alexander Keller, Beate Krischke, Martin Beye, Ingolf Steffan-Dewenter e Ricarda Scheiner. "CRISPR/Cas 9-Mediated Mutations as a New Tool for Studying Taste in Honeybees". Chemical Senses 45, n.º 8 (24 de setembro de 2020): 655–66. http://dx.doi.org/10.1093/chemse/bjaa063.
Texto completo da fonteHay, Elizabeth A., Christopher Knowles, Andreas Kolb e Alasdair MacKenzie. "Using the CRISPR/Cas9 system to understand neuropeptide biology and regulation". Neuropeptides 64 (agosto de 2017): 19–25. http://dx.doi.org/10.1016/j.npep.2016.11.010.
Texto completo da fontePérez-Sosa, Camilo, Maximiliano S. Pérez, Alexander Paolo Vallejo-Janeta, Shekhar Bhansali, Santiago Miriuka e Betiana Lerner. "Droplets for Gene Editing Using CRISPR-Cas9 and Clonal Selection Improvement Using Hydrogels". Micromachines 15, n.º 3 (19 de março de 2024): 413. http://dx.doi.org/10.3390/mi15030413.
Texto completo da fonteTripathi, Ratnakar, Nishant R. Sinha, Duraisamy Kempuraj, Praveen K. Balne, James R. Landreneau, Ankit Juneja, Aaron D. Webel e Rajiv R. Mohan. "Evaluation of CRISPR/Cas9 mediated TGIF gene editing to inhibit corneal fibrosis in vitro". Experimental Eye Research 220 (julho de 2022): 109113. http://dx.doi.org/10.1016/j.exer.2022.109113.
Texto completo da fonteHalmi, Muhammad Farid Azlan, Mohd Amirul Faiz Zulkifli e Kamal Hisham Kamarul Zaman. "CRISPR-Cas9 Genome Editing: A Brief Scientometric Insight on Scientific Production and Knowledge Structure". Journal of Scientometric Research 12, n.º 2 (6 de agosto de 2023): 395–402. http://dx.doi.org/10.5530/jscires.12.2.035.
Texto completo da fonteSheets, Lavinia, Melanie Holmgren e Katie S. Kindt. "How Zebrafish Can Drive the Future of Genetic-based Hearing and Balance Research". Journal of the Association for Research in Otolaryngology 22, n.º 3 (28 de abril de 2021): 215–35. http://dx.doi.org/10.1007/s10162-021-00798-z.
Texto completo da fonteHorie, Kengo, Kiyoshi Inoue, Shingo Suzuki, Saki Adachi, Saori Yada, Takashi Hirayama, Shizu Hidema, Larry J. Young e Katsuhiko Nishimori. "Oxytocin receptor knockout prairie voles generated by CRISPR/Cas9 editing show reduced preference for social novelty and exaggerated repetitive behaviors". Hormones and Behavior 111 (maio de 2019): 60–69. http://dx.doi.org/10.1016/j.yhbeh.2018.10.011.
Texto completo da fonteHay, Elizabeth Anne, Abdulla Razak Khalaf, Pietro Marini, Andrew Brown, Karyn Heath, Darrin Sheppard e Alasdair MacKenzie. "An analysis of possible off target effects following CAS9/CRISPR targeted deletions of neuropeptide gene enhancers from the mouse genome". Neuropeptides 64 (agosto de 2017): 101–7. http://dx.doi.org/10.1016/j.npep.2016.11.003.
Texto completo da fonteZeeshan, Saman, Ruoyun Xiong, Bruce T. Liang e Zeeshan Ahmed. "100 Years of evolving gene–disease complexities and scientific debutants". Briefings in Bioinformatics 21, n.º 3 (11 de abril de 2019): 885–905. http://dx.doi.org/10.1093/bib/bbz038.
Texto completo da fonteRojano, Elena, Pedro Seoane, Juan A. G. Ranea e James R. Perkins. "Regulatory variants: from detection to predicting impact". Briefings in Bioinformatics 20, n.º 5 (8 de junho de 2018): 1639–54. http://dx.doi.org/10.1093/bib/bby039.
Texto completo da fonteWang, Yi, Hui Wang, Ying Gao, Ding Zhang, Yan Zheng, Xingxing Hu, Qiuying Gao et al. "A Feasibility and Safety Study of Non-Viral Genome Targeting Anti-CD19 CAR-T in Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia". Blood 136, Supplement 1 (5 de novembro de 2020): 19–20. http://dx.doi.org/10.1182/blood-2020-139190.
Texto completo da fonte"Special issue: Discovery and development of the CRISPR–Cas9 system / Numéro spécial : Découverte et mise au point du système CRISPR–Cas9". Biochemistry and Cell Biology 95, n.º 2 (abril de 2017): 185. http://dx.doi.org/10.1139/bcb-2017-0050.
Texto completo da fonteCrispo, Martina, Alejo Menchaca, Géraldine Schlapp e María Noel Meikle. "Génération d’animaux génétiquement modifiés en Amérique du Sud". Bulletin de l'Académie vétérinaire de France 174 (2021). http://dx.doi.org/10.3406/bavf.2021.70957.
Texto completo da fonteZHANG, Cunfang, Linyong HU, Sijia LIU, Wen WANG e Kai ZHAO. "CRISPR/Cas9 Sistemi Kullanılarak Ectodysplasin A (eda) İfade Etmeyen Zebra Balığı Üretimi". Kafkas Universitesi Veteriner Fakultesi Dergisi, 2020. http://dx.doi.org/10.9775/kvfd.2019.23252.
Texto completo da fonteSherkatghanad, Zeinab, Moloud Abdar, Jeremy Charlier e Vladimir Makarenkov. "Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review". Briefings in Bioinformatics, 20 de abril de 2023. http://dx.doi.org/10.1093/bib/bbad131.
Texto completo da fonteBhattacharjee, Rudrarup, Lopamudra Das Roy e Amarendranath Choudhury. "Understanding on CRISPR/Cas9 mediated cutting-edge approaches for cancer therapeutics". Discover Oncology 13, n.º 1 (8 de junho de 2022). http://dx.doi.org/10.1007/s12672-022-00509-x.
Texto completo da fonteZhang, Tengbo, Yaxu Li, Yanrong Yang, Linjun Weng, Zhiqiang Wu, Jiali Zhu, Jieling Qin, Qi Liu e Ping Wang. "iCRISEE: an integrative analysis of CRISPR screen by reducing false positive hits". Briefings in Bioinformatics 23, n.º 1 (15 de dezembro de 2021). http://dx.doi.org/10.1093/bib/bbab505.
Texto completo da fonteYang, Zitian, Zexin Zhang, Jing Li, Wen Chen e Changning Liu. "CRISPRlnc: a machine learning method for lncRNA-specific single-guide RNA design of CRISPR/Cas9 system". Briefings in Bioinformatics 25, n.º 2 (22 de janeiro de 2024). http://dx.doi.org/10.1093/bib/bbae066.
Texto completo da fonteЕ.М., Колоскова, Езерский В.А., Белова Н.В., Кутьин И.В., Рябых В.П., Трубицина Т.П. e Максименко С.В. "ГЕННО-ИНЖЕНЕРНАЯ КОНСТРУКЦИЯ ДЛЯ ЗАМЕЩЕНИЯ ГЕНА МЫШИ ПОСЛЕДОВАТЕЛЬНОСТЬЮ кДНК ЛАКТОФЕРРИНА ЧЕЛОВЕКА МЕТОДОМ HDR С ПРИМЕНЕНИЕМ СИСТЕМЫ CRISPR / Cas9". Проблемы биологии продуктивных животных, n.º 2(2) (31 de agosto de 2018). https://doi.org/10.25687/1996-6733.prodanimbiol.2018.2.19-30.
Texto completo da fonteС.В., Максименко, Трубицина Т.П., Белова Н.В., Кутьин И.В. e Рябых В.П. "ПОЛУЧЕНИЕ БЛАСТОЦИСТ МЫШИ В КУЛЬТУРАЛЬНЫХ СРЕДАХ ПОСЛЕ МИКРОИНЪЕКЦИИ В ПРОНУКЛЕУСЫ ЗИГОТ СМЕСИ ПЛАЗМИД ДЛЯ ЭКСПРЕССИИ КОМПОНЕНТОВ CRISPR/Cas9 СИСТЕМЫ". Проблемы биологии продуктивных животных, n.º 3 (20 de dezembro de 2018). https://doi.org/10.25687/1996-6733.prodanimbiol.2018.3.106-110.
Texto completo da fonteHu, Yunping, Baisong Lu, Zhiyong Deng, Fei Xing e Wesley Hsu. "Virus-like particle-based delivery of Cas9/guide RNA ribonucleoprotein efficiently edits the brachyury gene and inhibits chordoma growth in vivo". Discover Oncology 14, n.º 1 (18 de maio de 2023). http://dx.doi.org/10.1007/s12672-023-00680-9.
Texto completo da fonteZhang, Guishan, Ye Luo, Xianhua Dai e Zhiming Dai. "Benchmarking deep learning methods for predicting CRISPR/Cas9 sgRNA on- and off-target activities". Briefings in Bioinformatics 24, n.º 6 (22 de setembro de 2023). http://dx.doi.org/10.1093/bib/bbad333.
Texto completo da fonteHu, Xumeng, Beibei Zhang, Xiaoli Li, Miao Li, Yange Wang, Handong Dan, Jiamu Zhou et al. "The application and progression of CRISPR/Cas9 technology in ophthalmological diseases". Eye, 1 de agosto de 2022. http://dx.doi.org/10.1038/s41433-022-02169-1.
Texto completo da fonteGuan, Zengrui, e Zhenran Jiang. "Transformer-based anti-noise models for CRISPR-Cas9 off-target activities prediction". Briefings in Bioinformatics, 17 de abril de 2023. http://dx.doi.org/10.1093/bib/bbad127.
Texto completo da fonteHuang, Xiaoqiang, Jun Zhou, Dongshan Yang, Jifeng Zhang, Xiaofeng Xia, Yuqing Eugene Chen e Jie Xu. "Decoding CRISPR–Cas PAM recognition with UniDesign". Briefings in Bioinformatics, 19 de abril de 2023. http://dx.doi.org/10.1093/bib/bbad133.
Texto completo da fonteYu, Xiaowei, Nannan Sun, Xue Yang, Zhenni Zhao, Jiamin Zhang, Miao Zhang, Dandan Zhang, Jian Ge e Zhigang Fan. "Myelin regulatory factor deficiency is associated with the retinal photoreceptor defects in mice". Visual Neuroscience 38 (2021). http://dx.doi.org/10.1017/s0952523821000043.
Texto completo da fonteNiu, Xiaohui, Kaixuan Deng, Lifen Liu, Kun Yang e Xuehai Hu. "A statistical framework for predicting critical regions of p53-dependent enhancers". Briefings in Bioinformatics, 11 de maio de 2020. http://dx.doi.org/10.1093/bib/bbaa053.
Texto completo da fonteNeil, Kevin, Nancy Allard, Patricia Roy, Frédéric Grenier, Alfredo Menendez, Vincent Burrus e Sébastien Rodrigue. "High‐efficiency delivery of CRISPR‐Cas9 by engineered probiotics enables precise microbiome editing". Molecular Systems Biology 17, n.º 10 (outubro de 2021). http://dx.doi.org/10.15252/msb.202110335.
Texto completo da fonteChoudhury, Alaksh, Jacob A. Fenster, Reilly G. Fankhauser, Joel L. Kaar, Olivier Tenaillon e Ryan T. Gill. "CRISPR /Cas9 recombineering‐mediated deep mutational scanning of essential genes in Escherichia coli". Molecular Systems Biology 16, n.º 3 (março de 2020). http://dx.doi.org/10.15252/msb.20199265.
Texto completo da fonteMa, Junze, Jinglei Li e Zheng Lu. "Application of CRISPR/Cas9 Gene Editing Technology in Studies of Intestinal Anaerobic Bacteria". Life Science and Technology, 15 de dezembro de 2022. http://dx.doi.org/10.57237/j.life.2022.01.002.
Texto completo da fonteOllivier, Matthias, Joselyn S. Soto, Kay E. Linker, Stefanie L. Moye, Yasaman Jami-Alahmadi, Anthony E. Jones, Ajit S. Divakaruni, Riki Kawaguchi, James A. Wohlschlegel e Baljit S. Khakh. "Crym-positive striatal astrocytes gate perseverative behaviour". Nature, 28 de fevereiro de 2024. http://dx.doi.org/10.1038/s41586-024-07138-0.
Texto completo da fonteGroot, Reinoud, Joel Lüthi, Helen Lindsay, René Holtackers e Lucas Pelkmans. "Large‐scale image‐based profiling of single‐cell phenotypes in arrayed CRISPR‐Cas9 gene perturbation screens". Molecular Systems Biology 14, n.º 1 (janeiro de 2018). http://dx.doi.org/10.15252/msb.20178064.
Texto completo da fonteAoi, Yuki, Abdelilah Benamar, Luc Saulnier, Marie-Christine Ralet e Helen M. North. "Biochemical data documenting variations in mucilage polysaccharides in a range of glycosyltransferase mutants". Scientific Data 10, n.º 1 (14 de outubro de 2023). http://dx.doi.org/10.1038/s41597-023-02604-2.
Texto completo da fonteHassan, Arshia Zernab, Henry N. Ward, Mahfuzur Rahman, Maximilian Billmann, Yoonkyu Lee e Chad L. Myers. "Dimensionality reduction methods for extracting functional networks from large‐scale CRISPR screens". Molecular Systems Biology, 26 de setembro de 2023. http://dx.doi.org/10.15252/msb.202311657.
Texto completo da fonteZhou, Jianyuan, Yanshang Li, Haotian Cao, Min Yang, Lingyu Chu, Taisong Li, Zhengmin Yu et al. "CATA: a comprehensive chromatin accessibility database for cancer". Database 2022, n.º 2022 (1 de janeiro de 2022). http://dx.doi.org/10.1093/database/baab085.
Texto completo da fonteAbdul Rahman, Siti Fairus, Azali Azlan, Kwok-Wai Lo, Ghows Azzam e Nethia Mohana-Kumaran. "Dual inhibition of anti-apoptotic proteins BCL-XL and MCL-1 enhances cytotoxicity of Nasopharyngeal carcinoma cells". Discover Oncology 13, n.º 1 (3 de fevereiro de 2022). http://dx.doi.org/10.1007/s12672-022-00470-9.
Texto completo da fonte