Artigos de revistas sobre o tema "Synapse activity"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Synapse activity".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Hu, Xiaoge, Jian-hong Luo e Junyu Xu. "The Interplay between Synaptic Activity and Neuroligin Function in the CNS". BioMed Research International 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/498957.
Texto completo da fontePettem, Katherine L., Daisaku Yokomaku, Hideto Takahashi, Yuan Ge e Ann Marie Craig. "Interaction between autism-linked MDGAs and neuroligins suppresses inhibitory synapse development". Journal of Cell Biology 200, n.º 3 (28 de janeiro de 2013): 321–36. http://dx.doi.org/10.1083/jcb.201206028.
Texto completo da fonteKo, Jaewon, Gilberto J. Soler-Llavina, Marc V. Fuccillo, Robert C. Malenka e Thomas C. Südhof. "Neuroligins/LRRTMs prevent activity- and Ca2+/calmodulin-dependent synapse elimination in cultured neurons". Journal of Cell Biology 194, n.º 2 (25 de julho de 2011): 323–34. http://dx.doi.org/10.1083/jcb.201101072.
Texto completo da fonteGaidarova, Svetlana, JianWu Li, Laura G. Corral, Emilia Glezer, Peter H. Schafer, Weilin Xie, Antonia Lopez-Girona, Bruce D. Cheson e Brydon Bennett. "Lenalidomide Alone and in Combination with Rituximab Enhances NK Cell Immune Synapse Formation in Chronic Lymphocytic Leukemia (CLL) Cells in Vitro through Activation of Rho and Rac1 GTPases." Blood 114, n.º 22 (20 de novembro de 2009): 3441. http://dx.doi.org/10.1182/blood.v114.22.3441.3441.
Texto completo da fonteMoss, Brenda L., Abby D. Fuller, Christie L. Sahley e Brian D. Burrell. "Serotonin Modulates Axo-Axonal Coupling Between Neurons Critical for Learning in the Leech". Journal of Neurophysiology 94, n.º 4 (outubro de 2005): 2575–89. http://dx.doi.org/10.1152/jn.00322.2005.
Texto completo da fonteWei, Wei, e Xiao-Jing Wang. "Downstream Effect of Ramping Neuronal Activity through Synapses with Short-Term Plasticity". Neural Computation 28, n.º 4 (abril de 2016): 652–66. http://dx.doi.org/10.1162/neco_a_00818.
Texto completo da fonteLiu, Kang K. L., Michael F. Hagan e John E. Lisman. "Gradation (approx. 10 size states) of synaptic strength by quantal addition of structural modules". Philosophical Transactions of the Royal Society B: Biological Sciences 372, n.º 1715 (5 de março de 2017): 20160328. http://dx.doi.org/10.1098/rstb.2016.0328.
Texto completo da fonteZhao, Qing-Tai, Fengben Xi, Yi Han, Andreas Grenmyr, Jin Hee Bae e Detlev Gruetzmacher. "Ferroelectric Devices for Neuromorphic Computing". ECS Meeting Abstracts MA2022-02, n.º 32 (9 de outubro de 2022): 1183. http://dx.doi.org/10.1149/ma2022-02321183mtgabs.
Texto completo da fonteWilson, Emily S., e Karen Newell-Litwa. "Stem cell models of human synapse development and degeneration". Molecular Biology of the Cell 29, n.º 24 (26 de novembro de 2018): 2913–21. http://dx.doi.org/10.1091/mbc.e18-04-0222.
Texto completo da fonteBloom, Ona, Emma Evergren, Nikolay Tomilin, Ole Kjaerulff, Peter Löw, Lennart Brodin, Vincent A. Pieribone, Paul Greengard e Oleg Shupliakov. "Colocalization of synapsin and actin during synaptic vesicle recycling". Journal of Cell Biology 161, n.º 4 (19 de maio de 2003): 737–47. http://dx.doi.org/10.1083/jcb.200212140.
Texto completo da fonteKruyer, Anna. "Astrocyte Heterogeneity in Regulation of Synaptic Activity". Cells 11, n.º 19 (5 de outubro de 2022): 3135. http://dx.doi.org/10.3390/cells11193135.
Texto completo da fonteLiu, Y., R. D. Fields, S. Fitzgerald, B. W. Festoff e P. G. Nelson. "Proteolytic activity, synapse elimination, and the Hebb synapse". Journal of Neurobiology 25, n.º 3 (março de 1994): 325–35. http://dx.doi.org/10.1002/neu.480250312.
Texto completo da fonteApollonio, Benedetta, Mariam Fanous, Mohamed-Reda Benmebarek, Stephen Devereux, Patrick Hagner, Michael Pourdehnad, Anita K. Gandhi, Piers E. Patten e Alan G. Ramsay. "CC-122 Repairs T Cell Activation in Chronic Lymphocytic Leukemia That Results in a Concomitant Increase in PD-1:PD-L1 and CTLA-4 Immune Checkpoint Expression at the Immunological Synapse". Blood 126, n.º 23 (3 de dezembro de 2015): 1738. http://dx.doi.org/10.1182/blood.v126.23.1738.1738.
Texto completo da fonteMamiya, Akira, e Farzan Nadim. "Target-Specific Short-Term Dynamics Are Important for the Function of Synapses in an Oscillatory Neural Network". Journal of Neurophysiology 94, n.º 4 (outubro de 2005): 2590–602. http://dx.doi.org/10.1152/jn.00110.2005.
Texto completo da fonteWang, Fei, Qianqian Wang, Baowei Liu, Lisheng Mei, Sisi Ma, Shujuan Wang, Ruoyu Wang et al. "The long noncoding RNA Synage regulates synapse stability and neuronal function in the cerebellum". Cell Death & Differentiation 28, n.º 9 (24 de março de 2021): 2634–50. http://dx.doi.org/10.1038/s41418-021-00774-3.
Texto completo da fonteChattopadhyaya, Bidisha. "Molecular Mechanisms Underlying Activity-Dependent GABAergic Synapse Development and Plasticity and Its Implications for Neurodevelopmental Disorders". Neural Plasticity 2011 (2011): 1–8. http://dx.doi.org/10.1155/2011/734231.
Texto completo da fonteStaple, Julie K., Florence Morgenthaler e Stefan Catsicas. "Presynaptic Heterogeneity: Vive la difference". Physiology 15, n.º 1 (fevereiro de 2000): 45–49. http://dx.doi.org/10.1152/physiologyonline.2000.15.1.45.
Texto completo da fonteBrodin, Lennart, Lora Bakeeva e Oleg Shupliakov. "Presynaptic mitochondria and the temporal pattern of neurotransmitter release". Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 354, n.º 1381 (28 de fevereiro de 1999): 365–72. http://dx.doi.org/10.1098/rstb.1999.0388.
Texto completo da fonteStevens-Sostre, Whitney A., e Mrinalini Hoon. "Cellular and Molecular Mechanisms Regulating Retinal Synapse Development". Annual Review of Vision Science 10, n.º 1 (15 de setembro de 2024): 377–402. http://dx.doi.org/10.1146/annurev-vision-102122-105721.
Texto completo da fonteFlores, Carmen E., Irina Nikonenko, Pablo Mendez, Jean-Marc Fritschy, Shiva K. Tyagarajan e Dominique Muller. "Activity-dependent inhibitory synapse remodeling through gephyrin phosphorylation". Proceedings of the National Academy of Sciences 112, n.º 1 (22 de dezembro de 2014): E65—E72. http://dx.doi.org/10.1073/pnas.1411170112.
Texto completo da fonteJi, Kyungmin, Jeremy Miyauchi e Stella E. Tsirka. "Microglia: An Active Player in the Regulation of Synaptic Activity". Neural Plasticity 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/627325.
Texto completo da fonteLalo, Ulyana, Jemma Andrew, Oleg Palygin e Yuriy Pankratov. "Ca2+-dependent modulation of GABAA and NMDA receptors by extracellular ATP: implication for function of tripartite synapse". Biochemical Society Transactions 37, n.º 6 (19 de novembro de 2009): 1407–11. http://dx.doi.org/10.1042/bst0371407.
Texto completo da fonteLee, Sang-Eun, Yoonju Kim, Jeong-Kyu Han, Hoyong Park, Unghwi Lee, Myeongsu Na, Soomin Jeong, ChiHye Chung, Gianluca Cestra e Sunghoe Chang. "nArgBP2 regulates excitatory synapse formation by controlling dendritic spine morphology". Proceedings of the National Academy of Sciences 113, n.º 24 (25 de maio de 2016): 6749–54. http://dx.doi.org/10.1073/pnas.1600944113.
Texto completo da fonteKawasaki, Fumiko, e Richard W. Ordway. "The Drosophila NSF Protein, dNSF1, Plays a Similar Role at Neuromuscular and Some Central Synapses". Journal of Neurophysiology 82, n.º 1 (1 de julho de 1999): 123–30. http://dx.doi.org/10.1152/jn.1999.82.1.123.
Texto completo da fonteRosenthal, Justin S., Jun Yin, Jingce Lei, Anupama Sathyamurthy, Jacob Short, Caixia Long, Emma Spillman, Chengyu Sheng e Quan Yuan. "Temporal regulation of nicotinic acetylcholine receptor subunits supports central cholinergic synapse development in Drosophila". Proceedings of the National Academy of Sciences 118, n.º 23 (1 de junho de 2021): e2004685118. http://dx.doi.org/10.1073/pnas.2004685118.
Texto completo da fonteVERZI, D. "Modeling activity-dependent synapse restructuring". Bulletin of Mathematical Biology 66, n.º 4 (julho de 2004): 745–62. http://dx.doi.org/10.1016/j.bulm.2003.10.005.
Texto completo da fonteHickmott, Peter W., e Martha Constantine-Paton. "Experimental Down-Regulation of the NMDA Channel Associated With Synapse Pruning". Journal of Neurophysiology 78, n.º 2 (1 de agosto de 1997): 1096–107. http://dx.doi.org/10.1152/jn.1997.78.2.1096.
Texto completo da fonteHardingham, Neil R., Giles E. Hardingham, Kevin D. Fox e Julian J. B. Jack. "Presynaptic Efficacy Directs Normalization of Synaptic Strength in Layer 2/3 Rat Neocortex After Paired Activity". Journal of Neurophysiology 97, n.º 4 (abril de 2007): 2965–75. http://dx.doi.org/10.1152/jn.01352.2006.
Texto completo da fonteKano, Masanobu, e Takaki Watanabe. "Developmental synapse remodeling in the cerebellum and visual thalamus". F1000Research 8 (25 de julho de 2019): 1191. http://dx.doi.org/10.12688/f1000research.18903.1.
Texto completo da fonteChubykin, Alexander A., Xinran Liu, Davide Comoletti, Igor Tsigelny, Palmer Taylor e Thomas C. Südhof. "Dissection of Synapse Induction by Neuroligins". Journal of Biological Chemistry 280, n.º 23 (29 de março de 2005): 22365–74. http://dx.doi.org/10.1074/jbc.m410723200.
Texto completo da fonteSalmasi, Mehrdad, Martin Stemmler, Stefan Glasauer e Alex Loebel. "Synaptic Information Transmission in a Two-State Model of Short-Term Facilitation". Entropy 21, n.º 8 (2 de agosto de 2019): 756. http://dx.doi.org/10.3390/e21080756.
Texto completo da fonteLi, Yan, Jonathan Popko, Kelly A. Krogh e Stanley A. Thayer. "Epileptiform stimulus increases Homer 1a expression to modulate synapse number and activity in hippocampal cultures". Journal of Neurophysiology 109, n.º 6 (15 de março de 2013): 1494–504. http://dx.doi.org/10.1152/jn.00580.2012.
Texto completo da fonteFedorovich, Sergei V., e Tatyana V. Waseem. "Metabolic regulation of synaptic activity". Reviews in the Neurosciences 29, n.º 8 (27 de novembro de 2018): 825–35. http://dx.doi.org/10.1515/revneuro-2017-0090.
Texto completo da fonteBamji, Shernaz X., Beatriz Rico, Nikole Kimes e Louis F. Reichardt. "BDNF mobilizes synaptic vesicles and enhances synapse formation by disrupting cadherin–β-catenin interactions". Journal of Cell Biology 174, n.º 2 (10 de julho de 2006): 289–99. http://dx.doi.org/10.1083/jcb.200601087.
Texto completo da fonteTSODYKS, M. V. "ASSOCIATIVE MEMORY IN NEURAL NETWORKS WITH THE HEBBIAN LEARNING RULE". Modern Physics Letters B 03, n.º 07 (10 de maio de 1989): 555–60. http://dx.doi.org/10.1142/s021798498900087x.
Texto completo da fonteGardner, D. "Sets of synaptic currents paired by common presynaptic or postsynaptic neurons". Journal of Neurophysiology 61, n.º 4 (1 de abril de 1989): 845–53. http://dx.doi.org/10.1152/jn.1989.61.4.845.
Texto completo da fonteRound, June L., Tamar Tomassian, Min Zhang, Viresh Patel, Stephen P. Schoenberger e M. Carrie Miceli. "Dlgh1 coordinates actin polymerization, synaptic T cell receptor and lipid raft aggregation, and effector function in T cells". Journal of Experimental Medicine 201, n.º 3 (7 de fevereiro de 2005): 419–30. http://dx.doi.org/10.1084/jem.20041428.
Texto completo da fonteFuhrmann, Galit, Idan Segev, Henry Markram e Misha Tsodyks. "Coding of Temporal Information by Activity-Dependent Synapses". Journal of Neurophysiology 87, n.º 1 (1 de janeiro de 2002): 140–48. http://dx.doi.org/10.1152/jn.00258.2001.
Texto completo da fonteJin, Hui, Vincent Guacci e Hong-Guo Yu. "Pds5 is required for homologue pairing and inhibits synapsis of sister chromatids during yeast meiosis". Journal of Cell Biology 186, n.º 5 (7 de setembro de 2009): 713–25. http://dx.doi.org/10.1083/jcb.200810107.
Texto completo da fonteLim, Agnes Fang Yi, Wei Lee Lim e Toh Hean Ch’ng. "Activity-dependent synapse to nucleus signaling". Neurobiology of Learning and Memory 138 (fevereiro de 2017): 78–84. http://dx.doi.org/10.1016/j.nlm.2016.07.024.
Texto completo da fonteBuffelli, Mario, Giuseppe Busetto, Carlo Bidoia, Morgana Favero e Alberto Cangiano. "Activity-Dependent Synaptic Competition at Mammalian Neuromuscular Junctions". Physiology 19, n.º 3 (junho de 2004): 85–91. http://dx.doi.org/10.1152/nips.01464.2003.
Texto completo da fonteSjöström, P. Jesper, Ede A. Rancz, Arnd Roth e Michael Häusser. "Dendritic Excitability and Synaptic Plasticity". Physiological Reviews 88, n.º 2 (abril de 2008): 769–840. http://dx.doi.org/10.1152/physrev.00016.2007.
Texto completo da fonteHu, Wei, Chenyi An e Wei J. Chen. "Molecular Mechanoneurobiology: An Emerging Angle to Explore Neural Synaptic Functions". BioMed Research International 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/486827.
Texto completo da fonteBernardinelli, Yann, Dominique Muller e Irina Nikonenko. "Astrocyte-Synapse Structural Plasticity". Neural Plasticity 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/232105.
Texto completo da fonteHuang, Huiqian, Xiaochen Lin, Zhuoyi Liang, Teng Zhao, Shengwang Du, Michael M. T. Loy, Kwok-On Lai, Amy K. Y. Fu e Nancy Y. Ip. "Cdk5-dependent phosphorylation of liprinα1 mediates neuronal activity-dependent synapse development". Proceedings of the National Academy of Sciences 114, n.º 33 (31 de julho de 2017): E6992—E7001. http://dx.doi.org/10.1073/pnas.1708240114.
Texto completo da fonteJasinska, Malgorzata, Anna Grzegorczyk, Ewa Jasek, Jan Litwin, Malgorzata Kossut, Grazyna Barbacka-Surowiak e Elzbieta Pyza. "Daily rhythm of synapse turnover in mouse somatosensory cortex". Acta Neurobiologiae Experimentalis 74, n.º 1 (31 de março de 2014): 104–10. http://dx.doi.org/10.55782/ane-2014-1977.
Texto completo da fonteTamzalit, Fella, Mitchell S. Wang, Weiyang Jin, Maria Tello-Lafoz, Vitaly Boyko, John M. Heddleston, Charles T. Black, Lance C. Kam e Morgan Huse. "Interfacial actin protrusions mechanically enhance killing by cytotoxic T cells". Science Immunology 4, n.º 33 (22 de março de 2019): eaav5445. http://dx.doi.org/10.1126/sciimmunol.aav5445.
Texto completo da fonteRowley, Paul A., e Margaret C. M. Smith. "Role of the N-Terminal Domain of φC31 Integrase in attB-attP Synapsis". Journal of Bacteriology 190, n.º 20 (8 de agosto de 2008): 6918–21. http://dx.doi.org/10.1128/jb.00612-08.
Texto completo da fonteHedrick, Nathan G., William J. Wright e Takaki Komiyama. "Local and global predictors of synapse elimination during motor learning". Science Advances 10, n.º 11 (15 de março de 2024). http://dx.doi.org/10.1126/sciadv.adk0540.
Texto completo da fonteTeo, Samuel, e Patricia C. Salinas. "Wnt-Frizzled Signaling Regulates Activity-Mediated Synapse Formation". Frontiers in Molecular Neuroscience 14 (14 de junho de 2021). http://dx.doi.org/10.3389/fnmol.2021.683035.
Texto completo da fonte