Literatura científica selecionada sobre o tema "Synapse activity"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Synapse activity".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Synapse activity"
Hu, Xiaoge, Jian-hong Luo e Junyu Xu. "The Interplay between Synaptic Activity and Neuroligin Function in the CNS". BioMed Research International 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/498957.
Texto completo da fontePettem, Katherine L., Daisaku Yokomaku, Hideto Takahashi, Yuan Ge e Ann Marie Craig. "Interaction between autism-linked MDGAs and neuroligins suppresses inhibitory synapse development". Journal of Cell Biology 200, n.º 3 (28 de janeiro de 2013): 321–36. http://dx.doi.org/10.1083/jcb.201206028.
Texto completo da fonteKo, Jaewon, Gilberto J. Soler-Llavina, Marc V. Fuccillo, Robert C. Malenka e Thomas C. Südhof. "Neuroligins/LRRTMs prevent activity- and Ca2+/calmodulin-dependent synapse elimination in cultured neurons". Journal of Cell Biology 194, n.º 2 (25 de julho de 2011): 323–34. http://dx.doi.org/10.1083/jcb.201101072.
Texto completo da fonteGaidarova, Svetlana, JianWu Li, Laura G. Corral, Emilia Glezer, Peter H. Schafer, Weilin Xie, Antonia Lopez-Girona, Bruce D. Cheson e Brydon Bennett. "Lenalidomide Alone and in Combination with Rituximab Enhances NK Cell Immune Synapse Formation in Chronic Lymphocytic Leukemia (CLL) Cells in Vitro through Activation of Rho and Rac1 GTPases." Blood 114, n.º 22 (20 de novembro de 2009): 3441. http://dx.doi.org/10.1182/blood.v114.22.3441.3441.
Texto completo da fonteMoss, Brenda L., Abby D. Fuller, Christie L. Sahley e Brian D. Burrell. "Serotonin Modulates Axo-Axonal Coupling Between Neurons Critical for Learning in the Leech". Journal of Neurophysiology 94, n.º 4 (outubro de 2005): 2575–89. http://dx.doi.org/10.1152/jn.00322.2005.
Texto completo da fonteWei, Wei, e Xiao-Jing Wang. "Downstream Effect of Ramping Neuronal Activity through Synapses with Short-Term Plasticity". Neural Computation 28, n.º 4 (abril de 2016): 652–66. http://dx.doi.org/10.1162/neco_a_00818.
Texto completo da fonteLiu, Kang K. L., Michael F. Hagan e John E. Lisman. "Gradation (approx. 10 size states) of synaptic strength by quantal addition of structural modules". Philosophical Transactions of the Royal Society B: Biological Sciences 372, n.º 1715 (5 de março de 2017): 20160328. http://dx.doi.org/10.1098/rstb.2016.0328.
Texto completo da fonteZhao, Qing-Tai, Fengben Xi, Yi Han, Andreas Grenmyr, Jin Hee Bae e Detlev Gruetzmacher. "Ferroelectric Devices for Neuromorphic Computing". ECS Meeting Abstracts MA2022-02, n.º 32 (9 de outubro de 2022): 1183. http://dx.doi.org/10.1149/ma2022-02321183mtgabs.
Texto completo da fonteWilson, Emily S., e Karen Newell-Litwa. "Stem cell models of human synapse development and degeneration". Molecular Biology of the Cell 29, n.º 24 (26 de novembro de 2018): 2913–21. http://dx.doi.org/10.1091/mbc.e18-04-0222.
Texto completo da fonteBloom, Ona, Emma Evergren, Nikolay Tomilin, Ole Kjaerulff, Peter Löw, Lennart Brodin, Vincent A. Pieribone, Paul Greengard e Oleg Shupliakov. "Colocalization of synapsin and actin during synaptic vesicle recycling". Journal of Cell Biology 161, n.º 4 (19 de maio de 2003): 737–47. http://dx.doi.org/10.1083/jcb.200212140.
Texto completo da fonteTeses / dissertações sobre o assunto "Synapse activity"
Ghezali, Grégory. "Control of synaptic transmission by astroglial connexin 30 : molecular basis, activity-dependence and physiological implication". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066423/document.
Texto completo da fontePerisynaptic astrocytes are active partners of neurons in cerebral information processing. A key property of astrocytes is to express high levels of the gap junction forming proteins, the connexins (Cxs). Strikingly, astroglial Cx30 was suggested early on to be involved in cognitive processes; however, its specific role in neurophysiology has yet been unexplored. We recently reveal that Cx30, through an unconventional non-channel function, controls hippocampal glutamatergic synaptic strength and plasticity by directly setting synaptic glutamate levels through astroglial glutamate clearance. Yet the cellular and molecular mechanisms involved in such control, its dynamic regulation by activity and its impact in vivo in a physiological context were unknown. To answer these questions, I demonstrated during my PhD that: 1) Cx30 drives the morphological maturation of hippocampal astrocytes via the modulation of a laminin signaling pathway regulating cell polarization; 2) Cx30 expression, perisynaptic localization and functions are modulated by neuronal activity; 3) Cx30-mediated control of astrocyte synapse coverage in the supraoptic nucleus of the hypothalamus sets basal plasmatic level of the neurohormone oxytocin and hence promotes appropriate oxytocin-based social abilities. Taken together, these data shed new light on astroglial Cxs activity-dependent regulations and roles in the postnatal development of neuroglial networks, as well as in astrocyte-synapse structural interactions mediating behavioral processes
Mardinly, Alan Robert. "Regulation of Synapse Development by Activity Dependent Transcription in Inhibitory Neurons". Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10739.
Texto completo da fonteBrown, Rosalind. "Role of activity in neuromuscular synaptic degeneration : insights from Wlds mice". Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/6523.
Texto completo da fonteXiao, Wei. "Class 5 semaphorins mediate synapse elimination and activity-dependent synaptic plasticity in hippocampal neurons". Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/60340.
Texto completo da fonteMedicine, Faculty of
Graduate
Jay, Taylor Reagan. "The TREM2 Receptor Directs Microglial Activity in Neurodegeneration and Neurodevelopment". Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1560181547156823.
Texto completo da fonteAtaman, Bulent. "The Molecular Mechanisms of Activity-Dependent Wingless (Wg)/Wnt Signaling at a Drosophila Glutamatergic Synapse: a Dissertation". eScholarship@UMMS, 2008. https://escholarship.umassmed.edu/gsbs_diss/353.
Texto completo da fonteSjölin, Hanna. "Regulation of NK cell activity : studies of DAP12-associated receptors in immune synapse formation and in responses to cytomegalovirus infection /". Stockholm, 2006. http://diss.kib.ki.se/2006/91-7140-985-8/.
Texto completo da fonteLouçã, Mathilde. "Functional impacts of Huntingtin lowering on the synaptic maturation and activity of neuronal networks derived from human induced pluripotent stem cells". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL054.
Texto completo da fonteHuntington's disease (HD) is a neurodegenerative disorder caused by a mutation in the Huntingtin gene (HTT). Reducing the expression of mutant HTT is an obvious therapeutic approach explored in patients. However, targeting mutant HTT often leads to a simultaneous reduction in non-mutant HTT. The consequences of losing this protein on neuronal health remain poorly understood.My doctoral work addresses this question using in vitro models of human neuronal networks differentiated from induced pluripotent stem cells. My research demonstrates that HTT loss induces developmental and homeostatic abnormalities in these networks. My results suggest that therapies targeting both mutant and non-mutant HTT indiscriminately could compromise the health of targeted neuronal circuits
McMahon, Catherine. "The mechanisms underlying normal spike activity of the primary afferent synapse in the cochlea and its dysfunction : an investigation of the possible mechanisms of peripheral tinnitus and auditory neuropathy". University of Western Australia. School of Biomedical and Chemical Sciences, 2004. http://theses.library.uwa.edu.au/adt-WU2003.0034.
Texto completo da fonteKatona, Linda. "The role of cell-type selective synaptic connections in rhythmic neuronal network activity in the hippocampus". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:cebe42e9-4040-486b-8ff4-fa1bf642bea0.
Texto completo da fonteLivros sobre o assunto "Synapse activity"
Mamalyga, L. M., ed. Simulation of Neural Networks Based on Self-Assembly of Reaction-Diffusion Electrical Synapses and their Nonlinear Electrophysiological Activity, 164 p. [in Russian]. Moscow: Moscow Pedagogical State University, Department of Biology & Chemistry, 2012.
Encontre o texto completo da fonteBaldi, Elisabetta, e Corrado Bucherelli. Neuroscience. Florence: Firenze University Press, 2017. http://dx.doi.org/10.36253/978-88-6453-638-5.
Texto completo da fonteGrant, Seth G. N. Synaptic Mechanisms of Psychotic Disorders. Editado por Dennis S. Charney, Eric J. Nestler, Pamela Sklar e Joseph D. Buxbaum. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190681425.003.0017.
Texto completo da fonteFlavell, Steven Willem. Regulation of synapse development by the activity-regulated transcription factor MEF2. 2009.
Encontre o texto completo da fonteSturgill, James Fitzhugh. Activity-dependent regulation of synapse structure and function: Roles of PSD-95 and the metabolic sensor, AMPK. 2010.
Encontre o texto completo da fonteBay, Mihee J., e Bruce K. Shapiro. Attention Deficit-Hyperactivity Disorder. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199937837.003.0060.
Texto completo da fonteBeninger, Richard J. Neuroanatomy and dopamine systems. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198824091.003.0011.
Texto completo da fonteBeninger, Richard J. Mechanisms of dopamine-mediated incentive learning. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198824091.003.0012.
Texto completo da fonteCapítulos de livros sobre o assunto "Synapse activity"
Palm, Daniel, e Frank Entschladen. "Neoneurogenesis and the Neuro-Neoplastic Synapse". In Neuronal Activity in Tumor Tissue, 91–98. Basel: KARGER, 2007. http://dx.doi.org/10.1159/000100049.
Texto completo da fonteZänker, Kurt S. "The Neuro-Neoplastic Synapse: Does it Exist?" In Neuronal Activity in Tumor Tissue, 154–61. Basel: KARGER, 2007. http://dx.doi.org/10.1159/000100075.
Texto completo da fonteUlbricht, Carolin, Ruth Leben, Yu Cao, Raluca A. Niesner e Anja E. Hauser. "Combined FRET-FLIM and NAD(P)H FLIM to Analyze B Cell Receptor Signaling Induced Metabolic Activity of Germinal Center B Cells In Vivo". In The Immune Synapse, 91–111. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3135-5_6.
Texto completo da fonteBarber, Michael J., e Jeff W. Lichtman. "Resolving the Paradoxical Effect of Activity on Synapse Elimination". In Computational Neuroscience, 131–35. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-4831-7_22.
Texto completo da fonteGorman, Julia, Konstantin Holzhausen, Joyce Reimer e Jørgen Riseth. "Realizing Synaptic Signal Transmission During Astrocyte-Neuron Interactions within the EMI Framework". In Computational Physiology, 65–78. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-25374-4_5.
Texto completo da fonteBera, Sujoy, Gonca Bayraktar, Katarzyna M. Grochowska, Michelle Melgarejo da Rosa e Michael R. Kreutz. "Activity Dependent Protein Transport from the Synapse to the Nucleus". In Dendrites, 111–24. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56050-0_5.
Texto completo da fonteBorodinsky, Laura N., e Nicholas C. Spitzer. "Mechanisms of Synapse Formation: Activity-Dependent Selection of Neurotransmitters and Receptors". In Co-Existence and Co-Release of Classical Neurotransmitters, 1–12. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-09622-3_3.
Texto completo da fonteGraham, Bruce. "Multiple Forms of Activity-Dependent Plasticity Enhance Information Transfer at a Dynamic Synapse". In Artificial Neural Networks — ICANN 2002, 45–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-46084-5_8.
Texto completo da fonteFarsi, Zohreh, e Andrew Woehler. "Imaging Activity-Dependent Signaling Dynamics at the Neuronal Synapse Using FRET-Based Biosensors". In Methods in Molecular Biology, 261–75. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6688-2_18.
Texto completo da fonteVarfolomeev, Sergey, Viktor Bykov e Svetlana Tsybenova. "Kinetic modelling of processes in the cholinergic synapse. Mechanisms of functioning and control methods". In ORGANOPHOSPHORUS NEUROTOXINS, 127–39. ru: Publishing Center RIOR, 2020. http://dx.doi.org/10.29039/22_127-139.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Synapse activity"
Tsai, Chiou-Tsun, Norihiro Watanabe e Maksim Mamonkin. "313 Enhancing anti-cancer activity of therapeutic T-cells with a synapse-stabilizing receptor". In SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0313.
Texto completo da fonteDanaei, Farzaneh, Fariba Bahrami e Mahyar Janahmadi. "Alzheimer's disease can cause epileptic seizure activity in a CA3-CA1 tripartite synapse: A computational study". In 2014 22nd Iranian Conference on Electrical Engineering (ICEE). IEEE, 2014. http://dx.doi.org/10.1109/iraniancee.2014.6999870.
Texto completo da fonteMejias, J. F., J. J. Torres, Joaquín Marro, Pedro L. Garrido e Pablo I. Hurtado. "Memory and pattern storage in neural networks with activity dependent synapses". In MODELING AND SIMULATION OF NEW MATERIALS: Proceedings of Modeling and Simulation of New Materials: Tenth Granada Lectures. AIP, 2009. http://dx.doi.org/10.1063/1.3082323.
Texto completo da fonteSergeeva, Svetlana. "ELECTRICAL SYNAPSES ON NERVE BRANCHES FORM THE REVERBERATION ACTIVITY OF A NEURON". In XVIII INTERNATIONAL INTERDISCIPLINARY CONGRESS NEUROSCIENCE FOR MEDICINE AND PSYCHOLOGY. LCC MAKS Press, 2022. http://dx.doi.org/10.29003/m2922.sudak.ns2022-18/305.
Texto completo da fonteIbanez, Jorge, Haley Houke, Michaela Meehl, Jennifer Ocasio, Nikhil Hebbar, Paulina Velasquez, Suzanne Baker e Giedre Krenciute. "231 Dysfunctional immune synapses restrain anti-DIPG activity of CAR T cells". In SITC 37th Annual Meeting (SITC 2022) Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-sitc2022.0231.
Texto completo da fonteWerner, T., D. Garbin, E. Vianello, O. Bichler, D. Cattaert, B. Yvert, B. De Salvo e L. Perniola. "Real-time decoding of brain activity by embedded Spiking Neural Networks using OxRAM synapses". In 2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2016. http://dx.doi.org/10.1109/iscas.2016.7539048.
Texto completo da fonteYuniati, Anis, e Retno Dwi Astuti. "Neural Network Synchronization of the Morris-Lecar Neuron Model Coupled with Short-Term Plasticity (STP)". In The 6th International Conference on Science and Engineering. Switzerland: Trans Tech Publications Ltd, 2024. http://dx.doi.org/10.4028/p-ymnn4n.
Texto completo da fonteBadica, C., M. Teodorescu, C. Spahiu, A. Badica e C. Fox. "Integrating role activity diagrams and hybrid IDEF for business process modeling using MDA". In Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'05). IEEE, 2005. http://dx.doi.org/10.1109/synasc.2005.40.
Texto completo da fonteGabrielli, Ângelo, Camila Sousa Bragunce Alves, Bruna Oliveira Bicalho e Débora Pimenta Alves. "Benefits and Challenges of Cannabis Use in the Treatment of Refractory Epilepsy". In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.239.
Texto completo da fonteTsukimata, Márcio Yutaka, Bianca Lumi Inomata da Silva e Jennison Alves Guimarães. "Açaí: potential anticonvulsant agent". In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.064.
Texto completo da fonte