Artigos de revistas sobre o tema "Sustainable biopolymers"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Sustainable biopolymers".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Perera, Kalpani Y., Amit K. Jaiswal e Swarna Jaiswal. "Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications". Foods 12, n.º 12 (20 de junho de 2023): 2422. http://dx.doi.org/10.3390/foods12122422.
Texto completo da fonteSoldo, Antonio, e Marta Miletic. "Durability against Wetting-Drying Cycles of Sustainable Biopolymer-Treated Soil". Polymers 14, n.º 19 (10 de outubro de 2022): 4247. http://dx.doi.org/10.3390/polym14194247.
Texto completo da fonteNazrun, Touha, Md Kamrul Hassan, Md Delwar Hossain, Bulbul Ahmed, Md Rayhan Hasnat e Swapan Saha. "Application of Biopolymers as Sustainable Cladding Materials: A Review". Sustainability 16, n.º 1 (19 de dezembro de 2023): 27. http://dx.doi.org/10.3390/su16010027.
Texto completo da fonteMAAN, SHEETAL, ANUSHREE JATRANA, VINAY KUMAR, MEENA SINDHU e SANCHIT MONDAL. "Chlorpyrifos Release Kinetics from Citric Acid Crosslinked Biopolymeric Nanoparticles: A Sustainable Approach". Asian Journal of Chemistry 35, n.º 11 (31 de outubro de 2023): 2822–28. http://dx.doi.org/10.14233/ajchem.2023.30755.
Texto completo da fonteBaranwal, Jaya, Brajesh Barse, Antonella Fais, Giovanna Lucia Delogu e Amit Kumar. "Biopolymer: A Sustainable Material for Food and Medical Applications". Polymers 14, n.º 5 (28 de fevereiro de 2022): 983. http://dx.doi.org/10.3390/polym14050983.
Texto completo da fontePatel, Nidhiben, e Dagnija Blumberga. "Insights of Bioeconomy: Biopolymer Evaluation Based on Sustainability Criteria". Environmental and Climate Technologies 27, n.º 1 (1 de janeiro de 2023): 323–38. http://dx.doi.org/10.2478/rtuect-2023-0025.
Texto completo da fonteKumar, M. Ashok, Arif Ali Baig Moghal, Kopparthi Venkata Vydehi e Abdullah Almajed. "Embodied Energy in the Production of Guar and Xanthan Biopolymers and Their Cross-Linking Effect in Enhancing the Geotechnical Properties of Cohesive Soil". Buildings 13, n.º 9 (10 de setembro de 2023): 2304. http://dx.doi.org/10.3390/buildings13092304.
Texto completo da fonteAnnu, Annu, Mona Mittal, Smriti Tripathi e Dong Kil Shin. "Biopolymeric Nanocomposites for Wastewater Remediation: An Overview on Recent Progress and Challenges". Polymers 16, n.º 2 (21 de janeiro de 2024): 294. http://dx.doi.org/10.3390/polym16020294.
Texto completo da fonteAhmad, Noormazlinah, Abdurahman Nour Hamid e Adil M. Osman. "A Review Study on the Potential of Microalgae Biomass Producing Biopolymer Material". Current Science and Technology 2, n.º 2 (15 de junho de 2023): 49–55. http://dx.doi.org/10.15282/cst.v2i2.9413.
Texto completo da fonteLemboye, Kehinde, e Abdullah Almajed. "Effect of Varying Curing Conditions on the Strength of Biopolymer Modified Sand". Polymers 15, n.º 7 (28 de março de 2023): 1678. http://dx.doi.org/10.3390/polym15071678.
Texto completo da fonteHelim, Rabiaa, Ali Zazoua e Hafsa Korri-Youssoufi. "Sustainable Biopolymer-Based Electrochemical Sensors for Trace Heavy Metal Determination in Water: A Comprehensive Review". Chemosensors 12, n.º 12 (17 de dezembro de 2024): 267. https://doi.org/10.3390/chemosensors12120267.
Texto completo da fonteSaini, Sakshi, Teena Saini, Vratika Verma e Jagram Meena. "Studies on biopolymer -Based Nanocomposites reinforced with metallic Nanoparticles". Acta Biology Forum 4, n.º 2 (8 de julho de 2024): 6–15. http://dx.doi.org/10.51470/abf.2024.4.2.06.
Texto completo da fonteJurić, Slaven, Marina Jurić, Anet Režek Jambrak e Marko Vinceković. "Tailoring Alginate/Chitosan Microparticles Loaded with Chemical and Biological Agents for Agricultural Application and Production of Value-Added Foods". Applied Sciences 11, n.º 9 (29 de abril de 2021): 4061. http://dx.doi.org/10.3390/app11094061.
Texto completo da fonteAvila, Luisa Bataglin, Carlos Schnorr, Luis F. O. Silva, Marcilio Machado Morais, Caroline Costa Moraes, Gabriela Silveira da Rosa, Guilherme L. Dotto, Éder C. Lima e Mu Naushad. "Trends in Bioactive Multilayer Films: Perspectives in the Use of Polysaccharides, Proteins, and Carbohydrates with Natural Additives for Application in Food Packaging". Foods 12, n.º 8 (19 de abril de 2023): 1692. http://dx.doi.org/10.3390/foods12081692.
Texto completo da fonteSharma, Mohit, Nihed Tellili, Imen Kacem e Tarek Rouissi. "Microbial Biopolymers: From Production to Environmental Applications—A Review". Applied Sciences 14, n.º 12 (11 de junho de 2024): 5081. http://dx.doi.org/10.3390/app14125081.
Texto completo da fonteFriuli, Marco, Rebecca Pellegrino, Leonardo Lamanna, Paola Nitti, Marta Madaghiele e Christian Demitri. "Materials Engineering to Help Pest Control: A Narrative Overview of Biopolymer-Based Entomopathogenic Fungi Formulations". Journal of Fungi 9, n.º 9 (12 de setembro de 2023): 918. http://dx.doi.org/10.3390/jof9090918.
Texto completo da fonteWronka, Anita, e Grzegorz Kowaluk. "Multiphase Biopolymers Enriched with Suberin Extraction Waste: Impact on Properties and Sustainable Development". Materials 17, n.º 22 (9 de novembro de 2024): 5472. http://dx.doi.org/10.3390/ma17225472.
Texto completo da fonteTeleky, Bernadette-Emőke, e Dan Cristian Vodnar. "Recent Advances in Biotechnological Itaconic Acid Production, and Application for a Sustainable Approach". Polymers 13, n.º 20 (16 de outubro de 2021): 3574. http://dx.doi.org/10.3390/polym13203574.
Texto completo da fonteDiyana, Z. N., R. Jumaidin, Mohd Zulkefli Selamat, Ihwan Ghazali, Norliza Julmohammad, Nurul Huda e R. A. Ilyas. "Physical Properties of Thermoplastic Starch Derived from Natural Resources and Its Blends: A Review". Polymers 13, n.º 9 (26 de abril de 2021): 1396. http://dx.doi.org/10.3390/polym13091396.
Texto completo da fonteBose, Ipsheta, Nousheen, Swarup Roy, Pallvi Yaduvanshi, Somesh Sharma, Vinay Chandel e Deblina Biswas. "Unveiling the Potential of Marine Biopolymers: Sources, Classification, and Diverse Food Applications". Materials 16, n.º 13 (5 de julho de 2023): 4840. http://dx.doi.org/10.3390/ma16134840.
Texto completo da fonteDe Luca, Stefano, Daniel Milanese, Duccio Gallichi-Nottiani, Antonella Cavazza e Corrado Sciancalepore. "Poly(lactic acid) and Its Blends for Packaging Application: A Review". Clean Technologies 5, n.º 4 (10 de novembro de 2023): 1304–43. http://dx.doi.org/10.3390/cleantechnol5040066.
Texto completo da fontePopović, Kosana, Slađana Živanović e Ivana Jevtić. "Biopolymer Packaging Materials in the Pharmaceutical Industry". AIDASCO Reviews 2, n.º 1 (2 de fevereiro de 2024): 46–56. http://dx.doi.org/10.59783/aire.2024.43.
Texto completo da fonteTung, Ngo Trinh, Tran Thi Y Nhi, Trinh Duc Cong, Tran Thi Thanh Hop e Dang Thi Mai. "Nanocellulose as promising reinforcement materials for biopolymer nanocomposites: a review". Vietnam Journal of Science and Technology 62, n.º 2 (19 de abril de 2024): 197–221. http://dx.doi.org/10.15625/2525-2518/18831.
Texto completo da fonteDakshinamoorthi, Balakumaran Manickam, Uma Adaikalavan, Ananth Chinnarasu, Nithya Krishnan e Swetha Jothiraman. "Polyhydroxybutyrates: A Sustainable Alternative for Synthetic Polymers". Biosciences Biotechnology Research Asia 21, n.º 3 (30 de setembro de 2024): 851–62. http://dx.doi.org/10.13005/bbra/3269.
Texto completo da fonteJoshi, Jnanada Shrikant, Sarah Vanessa Langwald, Andrea Ehrmann e Lilia Sabantina. "Algae-Based Biopolymers for Batteries and Biofuel Applications in Comparison with Bacterial Biopolymers—A Review". Polymers 16, n.º 5 (23 de fevereiro de 2024): 610. http://dx.doi.org/10.3390/polym16050610.
Texto completo da fonteHu, Xuanjun, Chao Lu, Howyn Tang, Hossein Pouri, Etienne Joulin e Jin Zhang. "Active Food Packaging Made of Biopolymer-Based Composites". Materials 16, n.º 1 (28 de dezembro de 2022): 279. http://dx.doi.org/10.3390/ma16010279.
Texto completo da fonteMartínez-Arcos, Andrea, Mònica Reig, José Manuel Cruz, José Luis Cortina, Ana Belén Moldes e Xanel Vecino. "Evaluation of Calcium Alginate-Based Biopolymers as Potential Component of Membranes for Recovering Biosurfactants from Corn Steep Water". Water 13, n.º 17 (31 de agosto de 2021): 2396. http://dx.doi.org/10.3390/w13172396.
Texto completo da fonteGebke, Stefan, Katrin Thümmler, Rodolphe Sonnier, Sören Tech, Andre Wagenführ e Steffen Fischer. "Suitability and Modification of Different Renewable Materials as Feedstock for Sustainable Flame Retardants". Molecules 25, n.º 21 (4 de novembro de 2020): 5122. http://dx.doi.org/10.3390/molecules25215122.
Texto completo da fonteRazak, Nur Syifaa, e Rahmah Mohamed. "Antimicrobial sustainable biopolymers for biomedical plastics applications – an overview". Polimery 66, n.º 11-12 (23 de dezembro de 2021): 574–83. http://dx.doi.org/10.14314/polimery.2021.11.2.
Texto completo da fontePerera, Kalpani Y., Jack Prendeville, Amit K. Jaiswal e Swarna Jaiswal. "Cold Plasma Technology in Food Packaging". Coatings 12, n.º 12 (5 de dezembro de 2022): 1896. http://dx.doi.org/10.3390/coatings12121896.
Texto completo da fonteMistretta, Maria Chiara, Luigi Botta, Rossella Arrigo, Francesco Leto, Giulio Malucelli e Francesco Paolo La Mantia. "Bionanocomposite Blown Films: Insights on the Rheological and Mechanical Behavior". Polymers 13, n.º 7 (5 de abril de 2021): 1167. http://dx.doi.org/10.3390/polym13071167.
Texto completo da fonteZhan, Zhijing, Yiming Feng, Jikai Zhao, Mingyu Qiao e Qing Jin. "Valorization of Seafood Waste for Food Packaging Development". Foods 13, n.º 13 (3 de julho de 2024): 2122. http://dx.doi.org/10.3390/foods13132122.
Texto completo da fontePopović, Senka, Jovana Ugarković, Danijela Šuput, Nevena Hromiš e Ranko Romanić. "A review of biopolymer films application for sustainable packaging of edible oils". Journal on Processing and Energy in Agriculture 25, n.º 3 (2021): 106–9. http://dx.doi.org/10.5937/jpea25-31624.
Texto completo da fontePrahaladan, Varsha, Nagireddy Poluri, Makara Napoli, Connor Castro, Kerem Yildiz, Brea-Anna Berry-White, Ping Lu, David Salas-de la Cruz e Xiao Hu. "Protein and Polysaccharide Fibers via Air Jet Spinning: Emerging Techniques for Biomedical and Sustainable Applications". International Journal of Molecular Sciences 25, n.º 24 (11 de dezembro de 2024): 13282. https://doi.org/10.3390/ijms252413282.
Texto completo da fonteMaiti, Binoy, Alex Abramov, M. G. Finn e David Díaz Díaz. "Biopolymers as sustainable metal bio‐adhesives". Journal of Applied Polymer Science 138, n.º 5 (20 de agosto de 2020): 49783. http://dx.doi.org/10.1002/app.49783.
Texto completo da fonteDintcheva, Nadka Tzankova, Giulia Infurna, Marilena Baiamonte e Francesca D’Anna. "Natural Compounds as Sustainable Additives for Biopolymers". Polymers 12, n.º 4 (25 de março de 2020): 732. http://dx.doi.org/10.3390/polym12040732.
Texto completo da fonteKeshipour, Sajjad, Mina Hadidi e Ozra Gholipour. "A Review on Hydrogen Generation by Photo-, Electro-, and Photoelectro-Catalysts Based on Chitosan, Chitin, Cellulose, and Carbon Materials Obtained from These Biopolymers". Advances in Polymer Technology 2023 (25 de julho de 2023): 1–18. http://dx.doi.org/10.1155/2023/8835940.
Texto completo da fontePatel, Nidhiben, e Dagnija Blumberga. "Assessing Biopolymer Packaging in the EU Market for Sustainable Bioeconomy Development". Environmental and Climate Technologies 28, n.º 1 (1 de janeiro de 2024): 342–55. http://dx.doi.org/10.2478/rtuect-2024-0027.
Texto completo da fonteJohn, Maya Jacob, Nokuzola Dyanti, Teboho Mokhena, Victor Agbakoba e Bruce Sithole. "Design and Development of Cellulosic Bionanocomposites from Forestry Waste Residues for 3D Printing Applications". Materials 14, n.º 13 (22 de junho de 2021): 3462. http://dx.doi.org/10.3390/ma14133462.
Texto completo da fonteArjunan, Yasothai, Gladstone Chistopher Jayakumar, Angayarkanny Subramanian e Swarna V. Kanth. "Development of Nano Bio Aldehyde Tanning Agent for Sustainable Leather Manufacture". Journal of the American Leather Chemists Association 118, n.º 4 (3 de abril de 2023): 162–68. http://dx.doi.org/10.34314/jalca.v118i4.7208.
Texto completo da fonteNazreen, Nazreen, Deepankar Singh Rawat, Rajdeep Malik e Jagram Meena. "Biopolymers-based Electrochemical Sensors: An Overview of Synthesis and Applications". Acta Biology Forum 3, n.º 3 (7 de outubro de 2024): 9–22. https://doi.org/10.51470/abf.2024.3.3.09.
Texto completo da fonteMalashin, Ivan, Dmitriy Martysyuk, Vadim Tynchenko, Andrei Gantimurov, Andrey Semikolenov, Vladimir Nelyub e Aleksei Borodulin. "Machine Learning-Based Process Optimization in Biopolymer Manufacturing: A Review". Polymers 16, n.º 23 (29 de novembro de 2024): 3368. https://doi.org/10.3390/polym16233368.
Texto completo da fonteHeydorn, R. L., N. Schlüter, R. Jagau, A. Kwade, U. Schröder, K. Dohnt e R. Krull. "Application of functional biopolymers for sustainable batteries". Chemie Ingenieur Technik 92, n.º 9 (28 de agosto de 2020): 1288–89. http://dx.doi.org/10.1002/cite.202055237.
Texto completo da fonteBalart, Rafael, Daniel Garcia-Garcia, Vicent Fombuena, Luis Quiles-Carrillo e Marina P. Arrieta. "Biopolymers from Natural Resources". Polymers 13, n.º 15 (30 de julho de 2021): 2532. http://dx.doi.org/10.3390/polym13152532.
Texto completo da fonteZubair, Muhammad, Sohail Shahzad, Ajaz Hussain, Rehan Ali Pradhan, Muhammad Arshad e Aman Ullah. "Current Trends in the Utilization of Essential Oils for Polysaccharide- and Protein-Derived Food Packaging Materials". Polymers 14, n.º 6 (13 de março de 2022): 1146. http://dx.doi.org/10.3390/polym14061146.
Texto completo da fonteZhu, Qiliang, Enqi Sun, Zequan Zhao, Tong Wu, Shuchang Meng, Zimeng Ma, Muhammad Shoaib, Hafeez Ur Rehman, Xia Cao e Ning Wang. "Biopolymer Materials in Triboelectric Nanogenerators: A Review". Polymers 16, n.º 10 (7 de maio de 2024): 1304. http://dx.doi.org/10.3390/polym16101304.
Texto completo da fonteKannan, Govindarajan, Evangelin Ramani Sujatha, Abdullah Almajed e Arif Ali Baig Moghal. "Microbial-Derived Biopolymers: A Pathway to Sustainable Civil Engineering". Polymers 17, n.º 2 (12 de janeiro de 2025): 172. https://doi.org/10.3390/polym17020172.
Texto completo da fonteJoga, Jayaprakash Reddy, e B. J. S. Varaprasad. "Sustainable Improvement of Expansive Clays Using Xanthan Gum as a Biopolymer". Civil Engineering Journal 5, n.º 9 (1 de setembro de 2019): 1893–903. http://dx.doi.org/10.28991/cej-2019-03091380.
Texto completo da fontePascuta, Mihaela Stefana, e Dan Cristian Vodnar. "Nanocarriers for Sustainable Active Packaging: An Overview during and Post COVID-19". Coatings 12, n.º 1 (17 de janeiro de 2022): 102. http://dx.doi.org/10.3390/coatings12010102.
Texto completo da fonteMendonça, Amanda, Paula V. Morais, Ana Cecília Pires, Ana Paula Chung e Paulo Venda Oliveira. "A Review on the Importance of Microbial Biopolymers Such as Xanthan Gum to Improve Soil Properties". Applied Sciences 11, n.º 1 (27 de dezembro de 2020): 170. http://dx.doi.org/10.3390/app11010170.
Texto completo da fonte