Literatura científica selecionada sobre o tema "Surfaces del Pezzo"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Surfaces del Pezzo".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Surfaces del Pezzo"
Park, Jihun, e Joonyeong Won. "Log canonical thresholds on Gorenstein canonical del Pezzo surfaces". Proceedings of the Edinburgh Mathematical Society 54, n.º 1 (28 de outubro de 2010): 187–219. http://dx.doi.org/10.1017/s001309150900039x.
Texto completo da fonteLUBBES, NIELS. "ALGORITHMS FOR SINGULARITIES AND REAL STRUCTURES OF WEAK DEL PEZZO SURFACES". Journal of Algebra and Its Applications 13, n.º 05 (25 de fevereiro de 2014): 1350158. http://dx.doi.org/10.1142/s0219498813501582.
Texto completo da fonteMehran, Afsaneh. "Kummer surfaces associated to (1, 2)-polarized abelian surfaces". Nagoya Mathematical Journal 202 (junho de 2011): 127–43. http://dx.doi.org/10.1215/00277630-1260477.
Texto completo da fonteMehran, Afsaneh. "Kummer surfaces associated to (1, 2)-polarized abelian surfaces". Nagoya Mathematical Journal 202 (junho de 2011): 127–43. http://dx.doi.org/10.1017/s002776300001028x.
Texto completo da fonteCascini, Paolo, Hiromu Tanaka e Jakub Witaszek. "On log del Pezzo surfaces in large characteristic". Compositio Mathematica 153, n.º 4 (8 de março de 2017): 820–50. http://dx.doi.org/10.1112/s0010437x16008265.
Texto completo da fonteJIANG, CHEN. "BOUNDING THE VOLUMES OF SINGULAR WEAK LOG DEL PEZZO SURFACES". International Journal of Mathematics 24, n.º 13 (dezembro de 2013): 1350110. http://dx.doi.org/10.1142/s0129167x13501103.
Texto completo da fonteKim, In-Kyun, e Joonyeong Won. "Weakly exceptional singularities of log del Pezzo surfaces". International Journal of Mathematics 30, n.º 01 (janeiro de 2019): 1950010. http://dx.doi.org/10.1142/s0129167x19500101.
Texto completo da fonteReid, Miles. "Nonnormal del Pezzo surfaces". Publications of the Research Institute for Mathematical Sciences 30, n.º 5 (1994): 695–727. http://dx.doi.org/10.2977/prims/1195165581.
Texto completo da fonteKuznetsov, Alexander Gennad'evich, e Yuri Gennadievich Prokhorov. "On higher-dimensional del Pezzo varieties". Izvestiya: Mathematics 87, n.º 3 (2023): 488–561. http://dx.doi.org/10.4213/im9385e.
Texto completo da fonteTrepalin, Andrey. "Quotients of del Pezzo surfaces". International Journal of Mathematics 30, n.º 12 (novembro de 2019): 1950068. http://dx.doi.org/10.1142/s0129167x1950068x.
Texto completo da fonteTeses / dissertações sobre o assunto "Surfaces del Pezzo"
Wilson, Andrew. "Smooth exceptional del Pezzo surfaces". Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4735.
Texto completo da fonteLoughran, Daniel Thomas. "Manin's conjecture for del Pezzo surfaces". Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.544344.
Texto completo da fonteKosta, Dimitra. "Del Pezzo surfaces with Du Val singularities". Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3934.
Texto completo da fonteUeda, Kazushi. "Homological mirror symmetry for toric del Pezzo surfaces". 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/144153.
Texto completo da fonte0048
新制・課程博士
博士(理学)
甲第12069号
理博第2963号
新制||理||1443(附属図書館)
23905
UT51-2006-J64
京都大学大学院理学研究科数学・数理解析専攻
(主査)助教授 河合 俊哉, 教授 齋藤 恭司, 教授 柏原 正樹
学位規則第4条第1項該当
Manzaroli, Matilde. "Real algebraic curves in real del Pezzo surfaces". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX017/document.
Texto completo da fonteThe study of the topology of real algebraic varieties dates back to the work of Harnack, Klein and Hilbert in the 19th century; in particular, the isotopy type classification of real algebraic curves with a fixed degree in RP2 is a classical subject that has undergone considerable evolution. On the other hand, apart from studies concerning Hirzebruch surfaces and at most degree 3 surfaces in RP3, not much is known for more general ambient surfaces. In particular, this is because varieties constructed using the patchworking method are hypersurfaces of toric varieties. However, there are many other real algebraic surfaces. Among these are the real rational surfaces, and more particularly the $mathbb{R}$-minimal surfaces. In this thesis, we extend the study of the topological types realized by real algebraic curves to the real minimal del Pezzo surfaces of degree 1 and 2. Furthermore, we end the classification of separating and non-separating real algebraic curves of bidegree $(5,5)$ in the quadric ellipsoid
Kleven, Stephanie. "Counting points of bounded height on del Pezzo surfaces". Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2948.
Texto completo da fonteMartinez, Garcia Jesus. "Dynamic alpha-invariants of del Pezzo surfaces with boundary". Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8090.
Texto completo da fonteBoitrel, Aurore. "Groupes d'automorphismes des surfaces del Pezzo sur un corps parfait". Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASM002.
Texto completo da fonteDel Pezzo surfaces are algebraic surfaces with quite special properties, that play an importantpart in the classification of projective algebraic surfaces up to birational transformations.The classification of smooth rational del Pezzo surfaces of degree d over an arbitraryperfect field is classical for d = 7, 8, 9 and new for d = 6. The same is the case for thedescription of their groups of automorphisms. Their classification and the description of theirautomorphism groups is much more difficult for d ≤ 5, as one can see already if the groundfield is the field of real numbers, and the classification is open over a general perfect field.Partial classifications exist over finite fields. Accordingly, we do not know their automorphismgroups in general.The objective of the thesis is to classify the smooth rational del Pezzo surfaces of degreed = 5 and d = 4 over an arbitrary perfect field and describe their automorphism groups.Due to the difficulty of the project, the case d = 4 will only be studied over the field ofreal numbers
Festi, D. "Topics in the arithmetic of Del Pezzo and K3 surfaces". Doctoral thesis, Università degli Studi di Milano, 2016. http://hdl.handle.net/2434/411137.
Texto completo da fonteTesta, Damiano. "The Severi problem for rational curves on del Pezzo surfaces". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/30356.
Texto completo da fonteThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 141-142).
Let X be a smooth projective surface and choose a curve C on X. Let VC be the set of all irreducible divisors on X linearly equivalent to C whose normalization is a rational curve. The Severi problem for rational curves on X with divisor class [C] consists of studying the irreducibility of the spaces VC as C varies among all curves on X. In this thesis, we prove that all the spaces VC are irreducible in the case where X is a del Pezzo surface of degree at least two. If the degree of X is one, then we prove the same result only for a general X, with the exception of V-KX, where KX is the canonical divisor of X. It is well known that for general del Pezzo surface of degree one, V-KX consists of twelve points, and thus cannot be irreducible.
by Damiano Testa.
Ph.D.
Livros sobre o assunto "Surfaces del Pezzo"
V, Nikulin V., ed. Del Pezzo and K3 surfaces. Tokyo: Mathematical Society of Japan, 2006.
Encontre o texto completo da fonteKunyavskiĭ, B. E. Del Pezzo surfaces of degree four. Paris: Société mathématique de France, 1989.
Encontre o texto completo da fontePirozhkov, Dmitrii. Admissible subcategories of del Pezzo surfaces. [New York, N.Y.?]: [publisher not identified], 2020.
Encontre o texto completo da fonteNakayama, Noboru. Classification of log del Pezzo surfaces of index two. Kyoto, Japan: Research Institute for Mathematical Sciences, Kyoto University, 2006.
Encontre o texto completo da fonteMaddock, Zachary Alexander. Del Pezzo surfaces with irregularity and intersection numbers on quotients in geometric invariant theory. [New York, N.Y.?]: [publisher not identified], 2012.
Encontre o texto completo da fonteDel Pezzo and K3 Surfaces. Tokyo, Japan: The Mathematical Society of Japan, 2006. http://dx.doi.org/10.2969/msjmemoirs/015010000.
Texto completo da fonteRobbiani, Marcello. On the arithmetic of toric Del Pezzo surfaces. 1996.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Surfaces del Pezzo"
Várilly-Alvarado, Anthony. "Arithmetic of Del Pezzo surfaces". In Birational Geometry, Rational Curves, and Arithmetic, 293–319. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6482-2_12.
Texto completo da fonteCheltsov, Ivan. "Del Pezzo Surfaces and Local Inequalities". In Springer Proceedings in Mathematics & Statistics, 83–101. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05681-4_5.
Texto completo da fonteBelousov, Grigory. "Cylinders in Del Pezzo Surfaces of Degree Two". In Springer Proceedings in Mathematics & Statistics, 17–70. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17859-7_2.
Texto completo da fonteNeitzke, Andrew. "A Mysterious Duality: M-Theory And Del Pezzo Surfaces". In Progress in String, Field and Particle Theory, 441–44. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0211-0_34.
Texto completo da fonteTschinkel, Yuri, e Kaiqi Yang. "Potentially Stably Rational Del Pezzo Surfaces over Nonclosed Fields". In Combinatorial and Additive Number Theory III, 227–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31106-3_17.
Texto completo da fonteSwinnerton-Dyer, Peter. "Weak Approximation on Del Pezzo Surfaces of Degree 4". In Progress in Mathematics, 235–57. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8170-8_14.
Texto completo da fonteLiedtke, Christian. "Morphisms to Brauer–Severi Varieties, with Applications to Del Pezzo Surfaces". In Geometry Over Nonclosed Fields, 157–96. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49763-1_6.
Texto completo da fontePetracci, Andrea. "A 1-Dimensional Component of K-Moduli of del Pezzo Surfaces". In Springer Proceedings in Mathematics & Statistics, 709–23. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-17859-7_36.
Texto completo da fonteKojima, Hideo. "Singularities of Normal Log Canonical del Pezzo Surfaces of Rank One". In Polynomial Rings and Affine Algebraic Geometry, 199–208. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42136-6_8.
Texto completo da fonteWittenberg, Olivier. "Principe de Hasse pour les surfaces de del Pezzo de degré 4". In Intersections de deux quadriques et pinceaux de courbes de genre 1, 109–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-69141-9_3.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Surfaces del Pezzo"
BROWNING, TIM D. "RESENT PROGRESS ON THE QUANTITATIVE ARITHMETIC OF DEL PEZZO SURFACES". In Proceedings of the 5th China-Japan Seminar. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814289924_0001.
Texto completo da fonteHarrison, Michael, e Josef Schicho. "Rational parametrisation for degree 6 Del Pezzo surfaces using lie algebras". In the 2006 international symposium. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1145768.1145794.
Texto completo da fonte