Artigos de revistas sobre o tema "Surfaces actives"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Surfaces actives".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Costa, Alexandre Magno Megale, Elizabeth Ferreira Martinez, Ana Paula Dias Demasi e Vera Cavalcanti de Araújo. "INFLUENCE OF DIFFERENT TITANIUM SURFACE TREATMENTS ON THE BIOLOGICAL BEHAVIOR OF OSTEOBLASTIC CELLS". Centro de Pesquisas Avançadas em Qualidade de Vida 16, V16N2 (2024): 1. http://dx.doi.org/10.36692/v16n2-44.
Texto completo da fontePopa, Camelia Lǎcrǎmioara. "Graphical Method in CAD Environment for Profiling End Mill Tool". Applied Mechanics and Materials 809-810 (novembro de 2015): 787–92. http://dx.doi.org/10.4028/www.scientific.net/amm.809-810.787.
Texto completo da fonteDjagni, Kokou K., e Michel Fok. "Dangers potentiels de l’utilisation des insecticides dans la culture cotonnière au Togo de 1990 à 2010". Cahiers Agricultures 28 (2019): 23. http://dx.doi.org/10.1051/cagri/2019023.
Texto completo da fonteLuengo, Gustavo S., Anne-Laure Fameau, Fabien Léonforte e Andrew J. Greaves. "Surface science of cosmetic substrates, cleansing actives and formulations". Advances in Colloid and Interface Science 290 (abril de 2021): 102383. http://dx.doi.org/10.1016/j.cis.2021.102383.
Texto completo da fonteTatini, Duccio, Paolo Tempesti, Francesca Ridi, Emiliano Fratini, Massimo Bonini e Piero Baglioni. "Pluronic/gelatin composites for controlled release of actives". Colloids and Surfaces B: Biointerfaces 135 (novembro de 2015): 400–407. http://dx.doi.org/10.1016/j.colsurfb.2015.08.002.
Texto completo da fonteKaushik, Prerna, Ravinder Verma, Vineet Mittal, Saurabh Bhatia, Anubhav Pratap-Singh e Deepak Kaushik. "Flavor Microencapsulation for Taste Masking in Medicated Chewing Gums—Recent Trends, Challenges, and Future Perspectives". Coatings 12, n.º 11 (31 de outubro de 2022): 1656. http://dx.doi.org/10.3390/coatings12111656.
Texto completo da fonteZhang, Fan, Haoran Tao, Yilin Li, Yanbing Wang, Yingying Zhou, Qunna Xu e Jianzhong Ma. "Enhanced Pickering Emulsion Stabilization of Cellulose Nanocrystals and Application for Reinforced and Hydrophobic Coatings". Coatings 12, n.º 10 (20 de outubro de 2022): 1594. http://dx.doi.org/10.3390/coatings12101594.
Texto completo da fonteGenova, Chiara, Elsa Fuentes, Gabriele Favero e Beatriz Prieto. "Evaluation of the Cleaning Effect of Natural-Based Biocides: Application on Different Phototropic Biofilms Colonizing the Same Granite Wall". Coatings 13, n.º 3 (26 de fevereiro de 2023): 520. http://dx.doi.org/10.3390/coatings13030520.
Texto completo da fonteTabuchi, Nobuhito, Tadashi Watanabe, Manabu Hattori, Kenichi Sakai, Hideki Sakai e Masahiko Abe. "Adsorption of Actives in Ophthalmological Drugs for Over-The-Counter on Soft Contact Lens Surfaces". Journal of Oleo Science 58, n.º 1 (2009): 43–52. http://dx.doi.org/10.5650/jos.58.43.
Texto completo da fonteBisset, Nicole B., Graham R. Webster, Yao Da Dong e Ben J. Boyd. "Understanding the kinetic mixing between liquid crystalline nanoparticles and agrochemical actives". Colloids and Surfaces B: Biointerfaces 175 (março de 2019): 324–32. http://dx.doi.org/10.1016/j.colsurfb.2018.11.063.
Texto completo da fonteSil, Bruno C., Avnish Patel, Jonathan M. Crowther, David J. Moore, Jonathan Hadgraft, Stephen T. Hilton e Majella E. Lane. "A Preliminary Investigation of Additive Manufacture to Fabricate Human Nail Plate Surrogates for Pharmaceutical Testing". Pharmaceutics 11, n.º 6 (28 de maio de 2019): 250. http://dx.doi.org/10.3390/pharmaceutics11060250.
Texto completo da fonteBiswal, Agni Kumar, e Sampa Saha. "Prolonging food shelf-life by dual actives release from multi-layered polymer particles". Colloids and Surfaces B: Biointerfaces 175 (março de 2019): 281–90. http://dx.doi.org/10.1016/j.colsurfb.2018.12.004.
Texto completo da fonteYow, Huai Nyin, e Alexander F. Routh. "Release Profiles of Encapsulated Actives from Colloidosomes Sintered for Various Durations". Langmuir 25, n.º 1 (6 de janeiro de 2009): 159–66. http://dx.doi.org/10.1021/la802711y.
Texto completo da fonteWu, Yue, Xiaotian Zhang, Mengyao He, Xue Tian, Neng Qian, Yangyi Sun e Dongming Qi. "Self-repairing superhydrophobic microfiber leather leveraging light-triggered release of actives". Progress in Organic Coatings 185 (dezembro de 2023): 107937. http://dx.doi.org/10.1016/j.porgcoat.2023.107937.
Texto completo da fonteMorales, Juan F., Sara Chuguransky, Lucas N. Alberca, Juan I. Alice, Sofía Goicoechea, María E. Ruiz, Carolina L. Bellera e Alan Talevi. "Positive Predictive Value Surfaces as a Complementary Tool to Assess the Performance of Virtual Screening Methods". Mini-Reviews in Medicinal Chemistry 20, n.º 14 (1 de setembro de 2020): 1447–60. http://dx.doi.org/10.2174/1871525718666200219130229.
Texto completo da fonteFerreres, Guillem, Kristina Ivanova, Ivan Ivanov e Tzanko Tzanov. "Nanomaterials and Coatings for Managing Antibiotic-Resistant Biofilms". Antibiotics 12, n.º 2 (2 de fevereiro de 2023): 310. http://dx.doi.org/10.3390/antibiotics12020310.
Texto completo da fonteLiu, Hui, Bo Chen, Zhengwei Mao e Changyou Gao. "Chitosan nanoparticles for loading of toothpaste actives and adhesion on tooth analogs". Journal of Applied Polymer Science 106, n.º 6 (15 de dezembro de 2007): 4248–56. http://dx.doi.org/10.1002/app.27078.
Texto completo da fonteStine, Jared S., Bryan J. Harper, Cathryn G. Conner, Orlin D. Velev e Stacey L. Harper. "In Vivo Toxicity Assessment of Chitosan-Coated Lignin Nanoparticles in Embryonic Zebrafish (Danio rerio)". Nanomaterials 11, n.º 1 (6 de janeiro de 2021): 111. http://dx.doi.org/10.3390/nano11010111.
Texto completo da fonteGindy, Marian E., Athanassios Z. Panagiotopoulos e Robert K. Prud'homme. "Composite Block Copolymer Stabilized Nanoparticles: Simultaneous Encapsulation of Organic Actives and Inorganic Nanostructures". Langmuir 24, n.º 1 (janeiro de 2008): 83–90. http://dx.doi.org/10.1021/la702902b.
Texto completo da fonteSalama, Paul, Ariel Gliksberg, Matan Cohen, Inbal Tzafrir e Noa Ziklo. "Why Are Wet Wipes So Difficult to Preserve? Understanding the Intrinsic Causes". Cosmetics 8, n.º 3 (16 de agosto de 2021): 73. http://dx.doi.org/10.3390/cosmetics8030073.
Texto completo da fonteCarlotti, M. E., S. Sapino, M. Gallarate, E. Peira e E. Ugazio. "O/W Microemulsions with Vanillin as Vehicles for Antiacne Actives: Preparation, Characterization, and Stability". Journal of Dispersion Science and Technology 29, n.º 7 (21 de julho de 2008): 991–98. http://dx.doi.org/10.1080/01932690701809922.
Texto completo da fonteAbad, Jose, Oliver Böhme e Elisa Román. "Dissociative Adsorption of NO on TiO2(110)-(1 × 2) Surface: Ti2O3Rows as Actives Sites for the Adsorption". Langmuir 23, n.º 14 (julho de 2007): 7583–86. http://dx.doi.org/10.1021/la700253s.
Texto completo da fonteChan, Derek H. H., Oliver J. Deane, Emily L. Kynaston, Christopher Lindsay, Philip Taylor e Steven P. Armes. "Sterically Stabilized Diblock Copolymer Nanoparticles Enable Convenient Preparation of Suspension Concentrates Comprising Various Agrochemical Actives". Langmuir 38, n.º 9 (22 de fevereiro de 2022): 2885–94. http://dx.doi.org/10.1021/acs.langmuir.1c03275.
Texto completo da fonteRicarte, Ralm G., Timothy P. Lodge e Marc A. Hillmyer. "Nanoscale Concentration Quantification of Pharmaceutical Actives in Amorphous Polymer Matrices by Electron Energy-Loss Spectroscopy". Langmuir 32, n.º 29 (15 de julho de 2016): 7411–19. http://dx.doi.org/10.1021/acs.langmuir.6b01745.
Texto completo da fonteSarker, Dipak K. "Architectures and Mechanical Properties of Drugs and Complexes of Surface-Active Compounds at Air-Water and Oil-Water Interfaces". Current Drug Discovery Technologies 16, n.º 1 (10 de abril de 2019): 11–29. http://dx.doi.org/10.2174/1570163814666171117132202.
Texto completo da fonteDas, Rabindra N., John M. Lauffer, Frank D. Egitto, Mark D. Poliks e Voya R. Markovich. "Rediscovering Multilayer Rigid-Flex with Z-interconnect Technology". International Symposium on Microelectronics 2012, n.º 1 (1 de janeiro de 2012): 000949–54. http://dx.doi.org/10.4071/isom-2012-wp54.
Texto completo da fonteGaddam, Raghuram, Peisen Qian e Joaquin Rodriguez Lopez. "Expanding the Scanning Electrochemical Microscopy Toolset for Evaluating Electron Transfer Kinetics of Concentrated and Specialized Redox Electrolytes on Carbon Surfaces". ECS Meeting Abstracts MA2023-02, n.º 59 (22 de dezembro de 2023): 2887. http://dx.doi.org/10.1149/ma2023-02592887mtgabs.
Texto completo da fonteBiswal, Agni Kumar, e Sampa Saha. "New insight into the mechanism of formation of dual actives loaded multilayered polymeric particles and their application in food preservation". Journal of Applied Polymer Science 136, n.º 40 (31 de maio de 2019): 48009. http://dx.doi.org/10.1002/app.48009.
Texto completo da fonteAndersson Trojer, Markus, Ye Li, Maria Wallin, Krister Holmberg e Magnus Nydén. "Charged microcapsules for controlled release of hydrophobic actives Part II: Surface modification by LbL adsorption and lipid bilayer formation on properly anchored dispersant layers". Journal of Colloid and Interface Science 409 (novembro de 2013): 8–17. http://dx.doi.org/10.1016/j.jcis.2013.06.070.
Texto completo da fonteEissa, A. M. F. "Amphoteric surface active agents". Grasas y Aceites 46, n.º 4-5 (30 de outubro de 1995): 240–44. http://dx.doi.org/10.3989/gya.1995.v46.i4-5.931.
Texto completo da fonteEl-Dougdoug, W. I. A. "Synthesis and surface active properties of cationic surface active agents from crude rice bran oil". Grasas y Aceites 50, n.º 5 (30 de outubro de 1999): 385–91. http://dx.doi.org/10.3989/gya.1999.v50.i5.683.
Texto completo da fonteNonomura, Yoshimune, Shigeyuki Komura e Kaoru Tsujii. "Surface-Active Particles with Microstructured Surfaces". Langmuir 21, n.º 21 (outubro de 2005): 9409–11. http://dx.doi.org/10.1021/la051816m.
Texto completo da fonteZhuravsky, S. V., A. A. Kaleniuk, N. T. Kartel e Yu A. Tarasenko. "Red/ox properties of modified oxygen and nitrogen active carbons". Surface 8(23) (30 de dezembro de 2016): 131–36. http://dx.doi.org/10.15407/surface.2016.08.131.
Texto completo da fontePirog, T. P. "MICROBIAL SURFACE-ACTIVE SUBSTANCES AS ANTIADHESIVE AGENTS". Biotechnologia Acta 9, n.º 3 (2016): 7–22. http://dx.doi.org/10.15407/biotech9.03.007.
Texto completo da fonteKümmel, Felix, Parmida Shabestari, Celia Lozano, Giovanni Volpe e Clemens Bechinger. "Formation, compression and surface melting of colloidal clusters by active particles". Soft Matter 11, n.º 31 (2015): 6187–91. http://dx.doi.org/10.1039/c5sm00827a.
Texto completo da fonteBondarenko, Dmitry, Iryna Plakhotnikova, Medeia Saliia, Olga Demina e Alexander Bondarenko. "Surface active properties of silicate and aluminosilicate surfaces". MATEC Web of Conferences 230 (2018): 03002. http://dx.doi.org/10.1051/matecconf/201823003002.
Texto completo da fonteSpas’ka, Olena. "Ultralight Surface-Active Systems for Preventing Liquid Hydrocarbons Evaporation". Chemistry & Chemical Technology 10, n.º 1 (15 de março de 2016): 63–66. http://dx.doi.org/10.23939/chcht10.01.063.
Texto completo da fonteTeus, S. M., B. D. Shanina, A. A. Konchits, G. S. Mogilny e V. G. Gavriljuk. "Mechanism of Embrittlement of Metals by Surface-Active Elements". METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 40, n.º 2 (31 de outubro de 2018): 201–18. http://dx.doi.org/10.15407/mfint.40.02.0201.
Texto completo da fonteKohut, Ananiy, Roman Fleychuk, Orest Hevus e Stanislav Voronov. "Macroinitiators on the basis of new peroxide surface active monomers". Chemistry & Chemical Technology 1, n.º 2 (15 de junho de 2007): 83–86. http://dx.doi.org/10.23939/chcht01.02.083.
Texto completo da fonteLe Bars, Marjorie, Fatoumata Sidibe, Elisabeth Mandart, Jacques Fabre, Philippe Le Grusse e Cheick Hamalla Diakite. "Évaluation des risques liés à l’utilisation de pesticides en culture cotonnière au Mali". Cahiers Agricultures 29 (2020): 4. http://dx.doi.org/10.1051/cagri/2020005.
Texto completo da fonteKhakkulov, J. M., Z. Sh Temirov e Sh E. Khalilov. "Electrochemical Reduction Of Macroiones As A Surface-Active Nanocoating And Nanocomposites". American Journal of Applied sciences 03, n.º 06 (12 de junho de 2021): 34–43. http://dx.doi.org/10.37547/tajas/volume03issue06-06.
Texto completo da fonteDjuraevna, Teshaboeva Nodira. "Strength Indicators Of Cement Systems With Additives Of Surface - Active Substances". American Journal of Applied sciences 03, n.º 05 (31 de maio de 2021): 203–9. http://dx.doi.org/10.37547/tajas/volume03issue05-32.
Texto completo da fonteBorzenkov, Mykola, e Orest Hevus. "Synhtesis of Novel Surface Active Methacrylate Monomers Based on ε-Caprolactone". Chemistry & Chemical Technology 8, n.º 2 (25 de junho de 2014): 141–46. http://dx.doi.org/10.23939/chcht08.02.141.
Texto completo da fonteAnoshin, V. A., e V. M. Ilyushenko. "Effect of surface-active elements on the formation of solidification cracks". Paton Welding Journal 2018, n.º 10 (28 de outubro de 2018): 14–21. http://dx.doi.org/10.15407/tpwj2018.10.03.
Texto completo da fonteYessengeldi, A. M., A. A. Yessengulova, G. Zh Kayralapova, R. S. Iminova e M. M. Beysebekov. "Obtaining of surface-active substance sorbents based on acrylate-clay polymers". International Journal of Biology and Chemistry 10, n.º 2 (2017): 4–9. http://dx.doi.org/10.26577/2218-7979-2017-10-2-4-9.
Texto completo da fonteAbadjieva, Emilia V. "On the Study of the Active Tooth Surfaces’ Geometry of the Spatial Rack Drives". International Journal of Engineering and Technology 16, n.º 1 (2024): 39–45. http://dx.doi.org/10.7763/ijet.2024.v16.1252.
Texto completo da fonteDuan, Qi, Elsa D. Angelini e Andrew F. Laine. "Surface Function Actives". Journal of Visual Communication and Image Representation 20, n.º 7 (outubro de 2009): 478–90. http://dx.doi.org/10.1016/j.jvcir.2009.06.002.
Texto completo da fonteNijdam, J., V. Trouillet, S. Kachel, P. Scharfer, W. Schabel e M. Kind. "Coat formation of surface-active proteins on aqueous surfaces during drying". Colloids and Surfaces B: Biointerfaces 123 (novembro de 2014): 53–60. http://dx.doi.org/10.1016/j.colsurfb.2014.07.050.
Texto completo da fonteBarabanova, Anna I., Eduard V. Karamov, Viktor F. Larichev, Galina V. Kornilaeva, Irina T. Fedyakina, Ali S. Turgiev, Alexander V. Naumkin et al. "Virucidal Coatings Active Against SARS-CoV-2". Molecules 29, n.º 20 (20 de outubro de 2024): 4961. http://dx.doi.org/10.3390/molecules29204961.
Texto completo da fonteBorzenkov, Mykola, Larysa Dolynska, Viktoriia Kochubei, Zoriana Nadashkevich e Orest Hevus. "Obtaining of Functional Surface Active Monomers Based on tert-Butylperoxy-6-hydroxyhexanoate". Chemistry & Chemical Technology 5, n.º 4 (15 de dezembro de 2011): 363–66. http://dx.doi.org/10.23939/chcht05.04.363.
Texto completo da fonte