Artigos de revistas sobre o tema "Surface brightness temperature"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Surface brightness temperature".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Yin, Chuan, Ming Zhang e Yaming Bo. "Multilayer Brightness Temperature Tracing Method for Rough Surface Scene Simulation in Passive Millimeter-Wave Imaging". International Journal of Antennas and Propagation 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/6763182.
Texto completo da fonteShi, Jiu Xi, Jin Song Deng e Xiao Ming Wang. "Characteristic Analysis of Rural Environment Temperature Field". Advanced Materials Research 807-809 (setembro de 2013): 14–19. http://dx.doi.org/10.4028/www.scientific.net/amr.807-809.14.
Texto completo da fonteHolbach, Heather M., Eric W. Uhlhorn e Mark A. Bourassa. "Off-Nadir SFMR Brightness Temperature Measurements in High-Wind Conditions". Journal of Atmospheric and Oceanic Technology 35, n.º 9 (setembro de 2018): 1865–79. http://dx.doi.org/10.1175/jtech-d-18-0005.1.
Texto completo da fonteYang, Xiao Feng, e Xing Ping Wen. "Evaluation of Land Surface Temperature Retrieved from MODIS Data". Advanced Materials Research 785-786 (setembro de 2013): 1333–36. http://dx.doi.org/10.4028/www.scientific.net/amr.785-786.1333.
Texto completo da fonteWinebrenner, Dale P., Eric J. Steig e David P. Schneider. "Temporal co-variation of surface and microwave brightness temperatures in Antarctica, with implications for the observation of surface temperature variability using satellite data". Annals of Glaciology 39 (2004): 346–50. http://dx.doi.org/10.3189/172756404781813952.
Texto completo da fonteSherjal, I., e M. Fily. "Temporal variations of microwave brightness temperatures over Antarctica". Annals of Glaciology 20 (1994): 19–25. http://dx.doi.org/10.3189/1994aog20-1-19-25.
Texto completo da fonteSherjal, I., e M. Fily. "Temporal variations of microwave brightness temperatures over Antarctica". Annals of Glaciology 20 (1994): 19–25. http://dx.doi.org/10.1017/s0260305500016177.
Texto completo da fonteStephen, H., S. Ahmad e T. C. Piechota. "Land Surface Brightness Temperature Modeling Using Solar Insolation". IEEE Transactions on Geoscience and Remote Sensing 48, n.º 1 (janeiro de 2010): 491–98. http://dx.doi.org/10.1109/tgrs.2009.2026893.
Texto completo da fonteGaustad, John E. "Temperature and brightness variations on Betelgeuse". Symposium - International Astronomical Union 118 (1986): 449–50. http://dx.doi.org/10.1017/s0074180900151885.
Texto completo da fonteChen, Xiuzhi, Yongxian Su, Yong Li, Liusheng Han, Jishan Liao e Shenbin Yang. "Retrieving China’s surface soil moisture and land surface temperature using AMSR-E brightness temperatures". Remote Sensing Letters 5, n.º 7 (3 de julho de 2014): 662–71. http://dx.doi.org/10.1080/2150704x.2014.960610.
Texto completo da fonteSandells, Melody, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer e Peter Toose. "Simulation of Arctic snow microwave emission in surface-sensitive atmosphere channels". Cryosphere 18, n.º 9 (4 de setembro de 2024): 3971–90. http://dx.doi.org/10.5194/tc-18-3971-2024.
Texto completo da fonteBrucker, Ludovic, Ghislain Picard, Laurent Arnaud, Jean-Marc Barnola, Martin Schneebeli, Hélène Brunjail, Eric Lefebvre e Michel Fily. "Modeling time series of microwave brightness temperature at Dome C, Antarctica, using vertically resolved snow temperature and microstructure measurements". Journal of Glaciology 57, n.º 201 (2011): 171–82. http://dx.doi.org/10.3189/002214311795306736.
Texto completo da fonteWrigge, Matthias, You-Hua Chu, Eugene A. Magnier e Yuichi Kamata. "ASCA SIS X-ray Observations of the Wind Blown Bubble NGC 6888". International Astronomical Union Colloquium 166 (1997): 425–28. http://dx.doi.org/10.1017/s0252921100071372.
Texto completo da fonteGrecu, Mircea, e William S. Olson. "Bayesian Estimation of Precipitation from Satellite Passive Microwave Observations Using Combined Radar–Radiometer Retrievals". Journal of Applied Meteorology and Climatology 45, n.º 3 (1 de março de 2006): 416–33. http://dx.doi.org/10.1175/jam2360.1.
Texto completo da fonteMcFarland, M. J., R. L. Miller e C. M. U. Neale. "Land surface temperature derived from the SSM/I passive microwave brightness temperatures". IEEE Transactions on Geoscience and Remote Sensing 28, n.º 5 (1990): 839–45. http://dx.doi.org/10.1109/36.58971.
Texto completo da fonteRichter, Friedrich, Matthias Drusch, Lars Kaleschke, Nina Maaß, Xiangshan Tian-Kunze e Susanne Mecklenburg. "Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models". Cryosphere 12, n.º 3 (14 de março de 2018): 921–33. http://dx.doi.org/10.5194/tc-12-921-2018.
Texto completo da fonteScott, K. Andrea, Mark Buehner, Alain Caya e Tom Carrieres. "Direct Assimilation of AMSR-E Brightness Temperatures for Estimating Sea Ice Concentration". Monthly Weather Review 140, n.º 3 (1 de fevereiro de 2012): 997–1013. http://dx.doi.org/10.1175/mwr-d-11-00014.1.
Texto completo da fonteMote, Thomas L., Mark R. Anderson, Karl C. Kuivinen e Clinton M. Rowe. "Passive microwave-derived spatial and temporal variations of summer melt on the Greenland ice sheet". Annals of Glaciology 17 (1993): 233–38. http://dx.doi.org/10.3189/s0260305500012891.
Texto completo da fonteMote, Thomas L., Mark R. Anderson, Karl C. Kuivinen e Clinton M. Rowe. "Passive microwave-derived spatial and temporal variations of summer melt on the Greenland ice sheet". Annals of Glaciology 17 (1993): 233–38. http://dx.doi.org/10.1017/s0260305500012891.
Texto completo da fonteBurgard, Clara, Dirk Notz, Leif T. Pedersen e Rasmus T. Tonboe. "The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – Part 1: How to obtain sea ice brightness temperatures at 6.9 GHz from climate model output". Cryosphere 14, n.º 7 (23 de julho de 2020): 2369–86. http://dx.doi.org/10.5194/tc-14-2369-2020.
Texto completo da fonteMould, Jeremy. "The Metallicity Sensitivity of a Surface Brightness Temperature Scale". Publications of the Astronomical Society of the Pacific 131, n.º 1003 (18 de julho de 2019): 094201. http://dx.doi.org/10.1088/1538-3873/ab29e0.
Texto completo da fontePestana, Steven J., C. Chris Chickadel e Jessica D. Lundquist. "Thermal infrared shadow-hiding in GOES-R ABI imagery: snow and forest temperature observations from the SnowEx 2020 Grand Mesa field campaign". Cryosphere 18, n.º 5 (7 de maio de 2024): 2257–76. http://dx.doi.org/10.5194/tc-18-2257-2024.
Texto completo da fonteLakhankar, T., J. Muñoz, P. Romanov, A. M. Powell, N. Krakauer, W. Rossow e R. Khanbilvardi. "CREST-Snow Field Experiment: analysis of snowpack properties using multi-frequency microwave remote sensing data". Hydrology and Earth System Sciences Discussions 9, n.º 7 (4 de julho de 2012): 8105–36. http://dx.doi.org/10.5194/hessd-9-8105-2012.
Texto completo da fonteAlasgah, Abdusalam, Maria Jacob, Linwood Jones e Larry Schneider. "Validation of the Hurricane Imaging Radiometer Forward Radiative Transfer Model for a Convective Rain Event". Remote Sensing 11, n.º 22 (13 de novembro de 2019): 2650. http://dx.doi.org/10.3390/rs11222650.
Texto completo da fonteCecil, Daniel J. "Passive Microwave Brightness Temperatures as Proxies for Hailstorms". Journal of Applied Meteorology and Climatology 48, n.º 6 (1 de junho de 2009): 1281–86. http://dx.doi.org/10.1175/2009jamc2125.1.
Texto completo da fonteBettenhausen, Michael H., e Magdalena D. Anguelova. "Brightness Temperature Sensitivity to Whitecap Fraction at Millimeter Wavelengths". Remote Sensing 11, n.º 17 (29 de agosto de 2019): 2036. http://dx.doi.org/10.3390/rs11172036.
Texto completo da fonteMaass, Nina, Lars Kaleschke, Xiangshan Tian-Kunze e Rasmus T. Tonboe. "Snow thickness retrieval from L-band brightness temperatures: a model comparison". Annals of Glaciology 56, n.º 69 (2015): 9–17. http://dx.doi.org/10.3189/2015aog69a886.
Texto completo da fonteBrown, Shannon, Shailen Desai, Stephen Keihm e Wenwen Lu. "Microwave Radiometer Calibration on Decadal Time Scales Using On-Earth Brightness Temperature References: Application to the TOPEX Microwave Radiometer". Journal of Atmospheric and Oceanic Technology 26, n.º 12 (1 de dezembro de 2009): 2579–91. http://dx.doi.org/10.1175/2009jtecha1305.1.
Texto completo da fonteWen, Zhongkai, Huan Zhang, Weiping Shu, Liqiang Zhang, Lei Liu, Xiang Lu, Yashi Zhou, Jingjing Ren, Shuang Li e Qingjun Zhang. "The SSR Brightness Temperature Increment Model Based on a Deep Neural Network". Remote Sensing 15, n.º 17 (24 de agosto de 2023): 4149. http://dx.doi.org/10.3390/rs15174149.
Texto completo da fonteVan Der Veen, C. J., e K. C. Jezek. "Seasonal variations in brightness temperature for central Antarctica". Annals of Glaciology 17 (1993): 300–306. http://dx.doi.org/10.1017/s0260305500013008.
Texto completo da fonteChen, Zhiwei, Rong Jin, Liqiang Zhang, Ke Chen e Qingxia Li. "Conjoint Inversion of Snow Temperature Profiles from Microwave and Infrared Brightness Temperature in Antarctica". Remote Sensing 15, n.º 5 (1 de março de 2023): 1396. http://dx.doi.org/10.3390/rs15051396.
Texto completo da fonteHong, Sungwook, Hwa-Jeong Seo e Young-Joo Kwon. "A Unique Satellite-Based Sea Surface Wind Speed Algorithm and Its Application in Tropical Cyclone Intensity Analysis". Journal of Atmospheric and Oceanic Technology 33, n.º 7 (julho de 2016): 1363–75. http://dx.doi.org/10.1175/jtech-d-15-0128.1.
Texto completo da fonteTimmermans, J., W. Verhoef, C. van der Tol e Z. Su. "Retrieval of Canopy component temperatures through Bayesian inversion of directional thermal measurements". Hydrology and Earth System Sciences Discussions 6, n.º 2 (2 de abril de 2009): 3007–40. http://dx.doi.org/10.5194/hessd-6-3007-2009.
Texto completo da fonteJackson, Darren L., e Gary A. Wick. "Near-Surface Air Temperature Retrieval Derived from AMSU-A and Sea Surface Temperature Observations". Journal of Atmospheric and Oceanic Technology 27, n.º 10 (1 de outubro de 2010): 1769–76. http://dx.doi.org/10.1175/2010jtecha1414.1.
Texto completo da fonteLi, Jiangtao, Yuanhong Guan, Qifeng Lu, Yansong Bao, Chunqiang Wu e Chaofan Xu. "Retrieval of Desert Microwave Land Surface Emissivity Based on Machine Learning Algorithms". Remote Sensing 16, n.º 1 (25 de dezembro de 2023): 89. http://dx.doi.org/10.3390/rs16010089.
Texto completo da fonteLi, Yanyan, Qing Dong, Yongzheng Ren, Fanping Kong e Zi Yin. "Effect of sea surface temperature on sea surface brightness temperature measured by L-band microware radiometers". IOP Conference Series: Earth and Environmental Science 310 (5 de setembro de 2019): 022045. http://dx.doi.org/10.1088/1755-1315/310/2/022045.
Texto completo da fonteNovotná, P., e A. Landfeld. "Colour of baked products during baking". Czech Journal of Food Sciences 18, No. 2 (1 de janeiro de 2000): 67–70. http://dx.doi.org/10.17221/8312-cjfs.
Texto completo da fonteFavrichon, Samuel, Carlos Jimenez e Catherine Prigent. "Inter-calibrating SMMR brightness temperatures over continental surfaces". Atmospheric Measurement Techniques 13, n.º 10 (14 de outubro de 2020): 5481–90. http://dx.doi.org/10.5194/amt-13-5481-2020.
Texto completo da fonteBoyarskii, D. A., A. N. Romanov, I. V. Khvostov, V. V. Tikhonov e E. A. Sharkov. "On evaluation of depth of soil freezing based on Smos satellite data". Исследования Земли из Космоса, n.º 2 (21 de maio de 2019): 3–13. http://dx.doi.org/10.31857/s0205-9614201923-13.
Texto completo da fonteIvanov, A. P. "Correcting the infrared images of soft biological tissues". Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series 55, n.º 1 (26 de março de 2019): 110–17. http://dx.doi.org/10.29235/1561-2430-2019-55-1-110-117.
Texto completo da fonteMengna, JIA, DI Kaichang, YUE Zongyu e SUN Shujuan. "Spatio-temporal variation characteristics of the Mars surface brightness temperature". National Remote Sensing Bulletin 20, n.º 4 (2016): 632–42. http://dx.doi.org/10.11834/jrs.20165243.
Texto completo da fonteXu, Gang, Ying Yang e Zhiguo Meng. "Influence of surface topography on brightness temperature of the regions along the road". E3S Web of Conferences 145 (2020): 02025. http://dx.doi.org/10.1051/e3sconf/202014502025.
Texto completo da fonteMeng, Xin, Haihua Chen, Jun Liu, Kun Ni e Lele Li. "Arctic Sea Ice Surface Temperature Inversion Using FY-3D/MWRI Brightness Temperature Data". Remote Sensing 16, n.º 3 (26 de janeiro de 2024): 490. http://dx.doi.org/10.3390/rs16030490.
Texto completo da fonteShuman, Christopher A., Richard B. Alley e Sridhar Anandakrishnan. "Characterization of a hoar-development episode using SSM/I brightness temperatures in the vicinity of the GISP2 site, Greenland". Annals of Glaciology 17 (1993): 183–88. http://dx.doi.org/10.3189/s0260305500012817.
Texto completo da fonteShuman, Christopher A., Richard B. Alley e Sridhar Anandakrishnan. "Characterization of a hoar-development episode using SSM/I brightness temperatures in the vicinity of the GISP2 site, Greenland". Annals of Glaciology 17 (1993): 183–88. http://dx.doi.org/10.1017/s0260305500012817.
Texto completo da fonteWethey, David S., Nicolas Weidberg, Sarah A. Woodin e Jorge Vazquez-Cuervo. "Characterization and Validation of ECOSTRESS Sea Surface Temperature Measurements at 70 m Spatial Scale". Remote Sensing 16, n.º 11 (24 de maio de 2024): 1876. http://dx.doi.org/10.3390/rs16111876.
Texto completo da fonteRambe, Pahala Roy, Mubarak Mubarak e Rifardi Rifardi. "A Map of Sea Surface Temperature in Rupat Strait Based on Satellite Image of Aqua-Modis". Journal of Coastal and Ocean Sciences 3, n.º 1 (10 de janeiro de 2022): 54–59. http://dx.doi.org/10.31258/jocos.3.1.54-59.
Texto completo da fonteDavis, Curt H., e H. Jay Zwally. "Geographic and seasonal variations in the surface properties of the ice sheets by satellite-radar altimetry". Journal of Glaciology 39, n.º 133 (1993): 687–97. http://dx.doi.org/10.1017/s0022143000016580.
Texto completo da fonteDavis, Curt H., e H. Jay Zwally. "Geographic and seasonal variations in the surface properties of the ice sheets by satellite-radar altimetry". Journal of Glaciology 39, n.º 133 (1993): 687–97. http://dx.doi.org/10.3189/s0022143000016580.
Texto completo da fonteKITAMURA, Ayako, Takeki IZUMI e Hiroshi MATSUYAMA. "Relationship among Surface Temperature Estimated by Surface Energy Budget, Ground Air Temperature and Brightness Temperature of Landsat-5 TM". Journal of Geography (Chigaku Zasshi) 113, n.º 4 (2004): 495–511. http://dx.doi.org/10.5026/jgeography.113.4_495.
Texto completo da fonte