Literatura científica selecionada sobre o tema "Surface brightness temperature"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Surface brightness temperature".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Surface brightness temperature"
Yin, Chuan, Ming Zhang e Yaming Bo. "Multilayer Brightness Temperature Tracing Method for Rough Surface Scene Simulation in Passive Millimeter-Wave Imaging". International Journal of Antennas and Propagation 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/6763182.
Texto completo da fonteShi, Jiu Xi, Jin Song Deng e Xiao Ming Wang. "Characteristic Analysis of Rural Environment Temperature Field". Advanced Materials Research 807-809 (setembro de 2013): 14–19. http://dx.doi.org/10.4028/www.scientific.net/amr.807-809.14.
Texto completo da fonteHolbach, Heather M., Eric W. Uhlhorn e Mark A. Bourassa. "Off-Nadir SFMR Brightness Temperature Measurements in High-Wind Conditions". Journal of Atmospheric and Oceanic Technology 35, n.º 9 (setembro de 2018): 1865–79. http://dx.doi.org/10.1175/jtech-d-18-0005.1.
Texto completo da fonteYang, Xiao Feng, e Xing Ping Wen. "Evaluation of Land Surface Temperature Retrieved from MODIS Data". Advanced Materials Research 785-786 (setembro de 2013): 1333–36. http://dx.doi.org/10.4028/www.scientific.net/amr.785-786.1333.
Texto completo da fonteWinebrenner, Dale P., Eric J. Steig e David P. Schneider. "Temporal co-variation of surface and microwave brightness temperatures in Antarctica, with implications for the observation of surface temperature variability using satellite data". Annals of Glaciology 39 (2004): 346–50. http://dx.doi.org/10.3189/172756404781813952.
Texto completo da fonteSherjal, I., e M. Fily. "Temporal variations of microwave brightness temperatures over Antarctica". Annals of Glaciology 20 (1994): 19–25. http://dx.doi.org/10.3189/1994aog20-1-19-25.
Texto completo da fonteSherjal, I., e M. Fily. "Temporal variations of microwave brightness temperatures over Antarctica". Annals of Glaciology 20 (1994): 19–25. http://dx.doi.org/10.1017/s0260305500016177.
Texto completo da fonteStephen, H., S. Ahmad e T. C. Piechota. "Land Surface Brightness Temperature Modeling Using Solar Insolation". IEEE Transactions on Geoscience and Remote Sensing 48, n.º 1 (janeiro de 2010): 491–98. http://dx.doi.org/10.1109/tgrs.2009.2026893.
Texto completo da fonteGaustad, John E. "Temperature and brightness variations on Betelgeuse". Symposium - International Astronomical Union 118 (1986): 449–50. http://dx.doi.org/10.1017/s0074180900151885.
Texto completo da fonteChen, Xiuzhi, Yongxian Su, Yong Li, Liusheng Han, Jishan Liao e Shenbin Yang. "Retrieving China’s surface soil moisture and land surface temperature using AMSR-E brightness temperatures". Remote Sensing Letters 5, n.º 7 (3 de julho de 2014): 662–71. http://dx.doi.org/10.1080/2150704x.2014.960610.
Texto completo da fonteTeses / dissertações sobre o assunto "Surface brightness temperature"
McAtee, Brendon Kynnie. "Surface-atmosphere interactions in the thermal infrared (8 - 14um)". Thesis, Curtin University, 2003. http://hdl.handle.net/20.500.11937/408.
Texto completo da fonteMcAtee, Brendon Kynnie. "Surface-atmosphere interactions in the thermal infrared (8 - 14um)". Curtin University of Technology, Department of Applied Physics, 2003. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=14481.
Texto completo da fonteInvestigation of the change in surface-leaving radiance as the zenith angle of observation varies is then also important in developing a better understanding of the radiative interaction between the land surface and the atmosphere. The work in this study investigates the atmospheric impacts using surface brightness temperature measurements from the ATSR-2 satellite sensor in combination with atmospheric profile data from radiosondes and estimates of the downwelling sky radiance made by a ground-based radiometer. A line-by-line radiative transfer model is used to model the angular impacts of the atmosphere upon the surfaceleaving radiance. Results from the modelling work show that if the magnitude of the upwelling and downwelling sky radiance and atmospheric transmittance are accurately known then the surface-emitted radiance and hence the LST may be retrieved with negligible error. Guided by the outcomes of the modelling work an atmospheric correction term is derived which accounts for absorption and emission by the atmosphere, and is based on the viewing geometry of the satellite sensor and atmospheric properties characteristic of a semi-arid field site near Alice Springs in the Northern Territory (Central Australia). Ground-based angular measurements of surface brightness temperature made by a scanning, self calibrating radiometer situated at this field site are then used to investigate how the surface-leaving radiance varies over a range of zenith angles comparable to that of the ATSR-2 satellite sensor.
Well defined cycles in the angular dependence of surface brightness temperature were observed on both diumal and seasonal timescales in these data. The observed cycles in surface brightness temperature are explained in terms of the interaction between the downwelling sky radiance and the angular dependence of the surface emissivity. The angular surface brightness temperature and surface emissivity information is then applied to derive an LST estimate of high accuracy (approx. 1 K at night and 1-2 K during the day), suitable for the validation of satellite-derived LST measurements. Finally, the atmospheric and land surface components of this work are combined to describe surface-atmosphere interaction at the field site. Algorithms are derived for the satellite retrieval of LST for the nadir and forward viewing geometries of the ATSR-2 sensor, based upon the cycles in the angular dependence of surface brightness temperature observed in situ and the atmospheric correction term developed from the modelling of radiative transfer in the atmosphere. A qualitative assessment of the performance of these algorithms indicates they may obtain comparable accuracy to existing dual angle algorithms (approx. 1.5 K) in the ideal case and an accuracy of 3-4 K in practice, which is limited by knowledge of atmospheric properties (eg downwelling sky radiance and atmospheric transmittance), and the surface emissivity. There are, however, strong prospects of enhanced performance given better estimates of these physical quantities, and if coefficients within the retrieval algorithms are determined over a wider range of observation zenith angles in the future.
Zhang, Shuting. "Angular effects of surface brightness temperature observed from Sentinel-3A/SLSTR data". Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD055.
Texto completo da fonteThis study adopts SLSTR TIR data as the main data source and retrieves surface brightness temperature using split-window algorithm to analyze the angular effect of surface brightness temperature (SBT). Based on the simulation database, SBT retrieval method is developed and applied to SLSTR dual-angle SBT extraction. Then the magnitude and characteristics of SBT differences between nadir and oblique views were observed, considering factors such as land use/land cover, season, latitude and climate. Finally, GeoDetector tool was used to perform attribution analysis of SBT angular effects
Van, den Bergh F., Wyk MA Van, Wyk BJ Van e G. Udahemuka. "A comparison of data-driven and model-driven approaches to brightness temperature diurnal cycle interpolation". SAIEE Africa Research Journal, 2007. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001082.
Texto completo da fonteHu, Tian. "Thermal Directionality Study and Application of Thermal Radiation to Drought Monitoring". Thesis, Griffith University, 2020. http://hdl.handle.net/10072/392051.
Texto completo da fonteThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Environment and Sc
Science, Environment, Engineering and Technology
Full Text
Dupont, Florent. "Télédétection micro-onde de surfaces enneigées en milieu arctique : étude des processus de surface de la calotte glaciaire Barnes, Nunavut, Canada". Thèse, Université de Sherbrooke, 2014. http://savoirs.usherbrooke.ca/handle/11143/5306.
Texto completo da fonteLivros sobre o assunto "Surface brightness temperature"
D, Conner Mark, e United States. National Aeronautics and Space Administration., eds. Identification and classification of transient signatures in over-land SSM/I imagery. [Washington, DC: National Aeronautics and Space Administration, 1994.
Encontre o texto completo da fonteUnited States. National Aeronautics and Space Administration., ed. A well-calibrated ocean algorithm for special sensor microwave/imager. [Washington, DC: National Aeronautics and Space Administration, 1997.
Encontre o texto completo da fonteUnited States. National Aeronautics and Space Administration., ed. A well-calibrated ocean algorithm for special sensor microwave/imager. [Washington, DC: National Aeronautics and Space Administration, 1997.
Encontre o texto completo da fonteUnited States. National Aeronautics and Space Administration., ed. A well-calibrated ocean algorithm for special sensor microwave/imager. [Washington, DC: National Aeronautics and Space Administration, 1997.
Encontre o texto completo da fonteUnited States. National Aeronautics and Space Administration., ed. Deriving earth science products from SSM/I: Progress report for contract NASW-4714, August 1993 through January 1995. Santa Rosa, CA: Remote Sensing Systems, 1995.
Encontre o texto completo da fonteK, Moore Richard, e United States. National Aeronautics and Space Administration., eds. Correction of WindScat scatterometric measurements by combining with AMSR radiometric data. Lawrence, Kan: Radar Systems and Remote Sensing Laboratory, University of Kansas Center for Research, 1996.
Encontre o texto completo da fonteRadiometric correction of scatterometric wind measurements. Lawrence, KS: Radar Systems and Remote Sensing Laboratory, Dept. of Electrical Engineering and Computer Science, University of Kansas, 1995.
Encontre o texto completo da fonteCalculations of microwave brightness temperature of rough soil surfaces: Bare field. [Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1985.
Encontre o texto completo da fonteCalculations of microwave brightness temperature of rough soil surfaces: Bare field. [Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1985.
Encontre o texto completo da fonteCalculations of microwave brightness temperature of rough soil surfaces: Bare field. [Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1985.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Surface brightness temperature"
Grankov, Alexander G., e Alexander A. Milshin. "Influence of Horizontal Heat Transfer in the Atmosphere Boundary Layer on the Relationship Between the SOA’s Brightness Temperature and Surface Heat Fluxes: Modeling". In Microwave Radiation of the Ocean-Atmosphere, 73–84. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21647-8_5.
Texto completo da fonteVincent, Warwick F. "3. Sunlight and motion". In Lakes: A Very Short Introduction, 26–47. Oxford University Press, 2018. http://dx.doi.org/10.1093/actrade/9780198766735.003.0003.
Texto completo da fonteValero, Mario M., Adam K. Kochanski e Craig B. Clements. "Remote characterization of fire behavior during the FireFlux II experiment". In Advances in Forest Fire Research 2022, 338–42. Imprensa da Universidade de Coimbra, 2022. http://dx.doi.org/10.14195/978-989-26-2298-9_54.
Texto completo da fonteOstlie, Dale A. "Measuring the Stars". In Astronomy: The Human Quest for Understanding, 589–637. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780198825821.003.0015.
Texto completo da fonteHoyt, Douglas V., e Kenneth H. Shatten. "Storms". In The Role of the Sun in Climate Change. Oxford University Press, 1997. http://dx.doi.org/10.1093/oso/9780195094138.003.0011.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Surface brightness temperature"
"Land surface brightness temperature retrieved from Landsat data". In 21st International Congress on Modelling and Simulation (MODSIM2015). Modelling and Simulation Society of Australia and New Zealand, 2015. http://dx.doi.org/10.36334/modsim.2015.l11.li.
Texto completo da fonteZhang, Xiaodong, Ji Zhou e Changming Yin. "Direct estimation of 1-KM land surface temperature from AMSR2 brightness temperature". In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2017. http://dx.doi.org/10.1109/igarss.2017.8128087.
Texto completo da fonteJiao, Zhong-Hu, Guangjian Yan, Tianxing Wang, Xihan Mu e Jing Zhao. "Modeling Surface Thermal Anisotropy Using Brightness Temperature over Complex Terrains". In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018. http://dx.doi.org/10.1109/igarss.2018.8518497.
Texto completo da fonteChen, Fu, Yuanwen Zeng e Shuang Liang. "Relationship between Specific Surface Parameters and Brightness Temperature in Metropolitan Area". In The International Conference on Remote Sensing,Environment and Transportation Engineering. Paris, France: Atlantis Press, 2013. http://dx.doi.org/10.2991/rsete.2013.167.
Texto completo da fonteZhou, Siyuan, Hongyu Xu, Xianchen Zhang e Weidong Hu. "Lunar surface radiation brightness temperature simulation for FY-4 lunar calibration". In 2021 14th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies (UCMMT). IEEE, 2021. http://dx.doi.org/10.1109/ucmmt53364.2021.9569894.
Texto completo da fonteEntekhabi, Dara, e Andrew F. Feldman. "Evaluating Brightness Temperature Information for Estimating Microwave Land Surface and Vegetation Properties". In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019. http://dx.doi.org/10.1109/igarss.2019.8900274.
Texto completo da fonteFreedman, A., D. McWatters e M. Spencer. "The Aquarius Scatterometer: An Active System for Measuring Surface Roughness for Sea-Surface Brightness Temperature Correction". In 2006 IEEE International Symposium on Geoscience and Remote Sensing. IEEE, 2006. http://dx.doi.org/10.1109/igarss.2006.436.
Texto completo da fonteHenocq, C., J. Boutin, F. Petitcolin, S. Arnault e P. Lattes. "Vertical variability of Sea Surface Salinity and influence on L-band brightness temperature". In 2007 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2007. http://dx.doi.org/10.1109/igarss.2007.4422966.
Texto completo da fontePeng, Bin, Jiancheng Shi, Yonghui Lei, Tianjie Zhao e Dongyang Li. "Dual state-parameter estimation of land surface model through assimilating microwave brightness temperature". In SPIE Asia-Pacific Remote Sensing, editado por Thomas J. Jackson, Jing Ming Chen, Peng Gong e Shunlin Liang. SPIE, 2014. http://dx.doi.org/10.1117/12.2069608.
Texto completo da fonteSong, Chengyun, Li Jia e Massimo Menenti. "A method for retrieving high-resolution surface soil moisture by downscaling AMSR-E brightness temperature". In IGARSS 2012 - 2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2012. http://dx.doi.org/10.1109/igarss.2012.6351461.
Texto completo da fonte