Literatura científica selecionada sobre o tema "Structures lattices"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Structures lattices".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Structures lattices"
Majari, Parisa, Daniel Olvera-Trejo, Jorge A. Estrada-Díaz, Alex Elías-Zúñiga, Oscar Martinez-Romero, Claudia A. Ramírez-Herrera e Imperio Anel Perales-Martínez. "Enhanced Lightweight Structures Through Brachistochrone-Inspired Lattice Design". Polymers 17, n.º 5 (28 de fevereiro de 2025): 654. https://doi.org/10.3390/polym17050654.
Texto completo da fonteMaskery, Ian, Alexandra Hussey, Ajit Panesar, Adedeji Aremu, Christopher Tuck, Ian Ashcroft e Richard Hague. "An investigation into reinforced and functionally graded lattice structures". Journal of Cellular Plastics 53, n.º 2 (28 de julho de 2016): 151–65. http://dx.doi.org/10.1177/0021955x16639035.
Texto completo da fonteHorváth, Eszter K., Sándor Radeleczki, Branimir Šešelja e Andreja Tepavčević. "A Note on Cuts of Lattice-Valued Functions and Concept Lattices". Mathematica Slovaca 73, n.º 3 (1 de junho de 2023): 583–94. http://dx.doi.org/10.1515/ms-2023-0043.
Texto completo da fonteEl-Gayar, Mostafa A., e Radwan Abu-Gdairi. "Extension of topological structures using lattices and rough sets". AIMS Mathematics 9, n.º 3 (2024): 7552–69. http://dx.doi.org/10.3934/math.2024366.
Texto completo da fonteShatabda, Swakkhar, M. A. Hakim Newton, Mahmood A. Rashid, Duc Nghia Pham e Abdul Sattar. "How Good Are Simplified Models for Protein Structure Prediction?" Advances in Bioinformatics 2014 (29 de abril de 2014): 1–9. http://dx.doi.org/10.1155/2014/867179.
Texto completo da fonteGrabowski, Adam. "Stone Lattices". Formalized Mathematics 23, n.º 4 (1 de dezembro de 2015): 387–96. http://dx.doi.org/10.1515/forma-2015-0031.
Texto completo da fontePan, Chen, Yafeng Han e Jiping Lu. "Design and Optimization of Lattice Structures: A Review". Applied Sciences 10, n.º 18 (13 de setembro de 2020): 6374. http://dx.doi.org/10.3390/app10186374.
Texto completo da fonteLan, Tian, Chenxi Peng, Kate Fox, Truong Do e Phuong Tran. "Triply periodic minimal surfaces lattice structures: Functional graded and hybrid designs for engineering applications". Materials Science in Additive Manufacturing 2, n.º 3 (27 de setembro de 2023): 1753. http://dx.doi.org/10.36922/msam.1753.
Texto completo da fonteLiu, Tinghao, e Guangbo Hao. "Design of Deployable Structures by Using Bistable Compliant Mechanisms". Micromachines 13, n.º 5 (19 de abril de 2022): 651. http://dx.doi.org/10.3390/mi13050651.
Texto completo da fonteFlaut, Cristina, Dana Piciu e Bianca Liana Bercea. "Some Applications of Fuzzy Sets in Residuated Lattices". Axioms 13, n.º 4 (18 de abril de 2024): 267. http://dx.doi.org/10.3390/axioms13040267.
Texto completo da fonteTeses / dissertações sobre o assunto "Structures lattices"
Galvin, Brian Russell. "Numerical studies of localized vibrating structures in nonlinear lattices". Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/28408.
Texto completo da fonteZhang, Botao. "Design of Variable-Density Structures for Additive Manufacturing Using Gyroid Lattices". University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535374427634743.
Texto completo da fonteBrown, Stephen A. "The response of polyhedra in close packed structures to temperature and pressure". Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-11102009-020124/.
Texto completo da fonteDamon, François. "Sonder des structures complexes avec des ondes de matière". Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30342/document.
Texto completo da fonteThis thesis presents the studies that I did at the Laboratoire de Physique Théorique. It concerns the interaction between matter waves and time and space depandant optical lattices. Using such lattices allows one to manipulate coherently the dynamical properties of ultra cold atoms. This theoretical study has been done in collaboration with the Cold Atoms group at the LCAR laboratory. The spatial variations of the lattice envelope locally create spatial gaps which create a Bragg cavity for matter waves. We have st udied in detail their properties and the cavity has been realized experimentally by using a Ru bid ium 85 Bose-Einstein condensate in a wave guide. We have also studied the propagation of an atomic cloud in a bichromatic optical lattice which allows us to make a quantum simulator of the Harper madel. The spectrum of the system Hamiltonian· posseses a fractal dimension which can be numerically characterized. We have also shawn that it is possible to use the repulsive interatomic interaction of a Bose-Einstein condensate in arder to amplify the momentum-position correlation during propagation in a guide. Our st udy shows that a mesure of local dynamical quantities of the atomic cloud enables one to experimentally probe resonances of an optical potential down to the picoKelvin scale. At last, an atomic cloud with attractive interactions admit a stable solution, the soliton. We have numerically demonstrated that this soliton can be used to probe bound states of a potential by populating those states through a scattering experiment, for example surface states
Reid, Robert. "Propagation and period-doubling of coherent structures in coupled lattice maps". Thesis, University of Warwick, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369417.
Texto completo da fonteLeo, James Lewis. "The transport properties of semiconductor super-lattices and multiple quantum well structures". Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/47153.
Texto completo da fonteHolder, Jonathan Paul. "Resonant tunnelling spectroscopy of vertical GaAs/AlGaAs structures". Thesis, University of Exeter, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312281.
Texto completo da fonteStay, Justin L. "Multi-beam-interference-based methodology for the fabrication of photonic crystal structures". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31783.
Texto completo da fonteCommittee Chair: Thomas K. Gaylord; Committee Member: Donald D. Davis; Committee Member: Gee-Kung Chang; Committee Member: Muhannad S. Bakir; Committee Member: Phillip N. First. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Refai, Khalil. "Effet de la méso-architecture sur le comportement en fatigue des structures lattices optimisées obtenues par fabrication additive". Thesis, Paris, HESAM, 2020. http://www.theses.fr/2020HESAE028.
Texto completo da fonteA numerical approach is proposed to assess the high cycle fatigue strength of periodic cellular structures produced by SLM under multiaxial loads. The model is based on a general numerical homogenisation scheme and an explicit description of the Elementary Cell combined to an extreme values analysis making use of a fatigue indicator parameter based on Crossland’s criterion. Also, geometric discrepancy and surface roughness are experimentally characterised and considered in the numerical model using three methods which are compared to the experimental fatigue strength. Topology optimisation (TO) pushes the boundaries of design freedom even further. In our study, Topology Optimisation was developed to prevent fatigue failure using SIMP method revisited and reformulated within the mathematical framework of Non-Uniform Rational BSpline functions
Chen, Li. "A quasicontinuum approach towards mechanical simulations of periodic lattice structures". Doctoral thesis, Universite Libre de Bruxelles, 2020. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/314314.
Texto completo da fonteDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Livros sobre o assunto "Structures lattices"
Müller-Hoissen, Folkert, Jean Marcel Pallo e Jim Stasheff, eds. Associahedra, Tamari Lattices and Related Structures. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0405-9.
Texto completo da fonteFuentes, Benjamin J. Optical lattices: Structures, atoms, and solitons. Hauppauge, N.Y: Nova Science Publishers, 2012.
Encontre o texto completo da fonteGalvin, Brian Russell. Numerical studies of localized vibrating structures in nonlinear lattices. Monterey, Calif: Naval Postgraduate School, 1991.
Encontre o texto completo da fonteInternational Conference on Modulated Semiconductor Structures (3rd 1987 Montpellier, France). 3rd International Conference on Modulated Semiconductor Structures, 6-10 July 1987, Montpellier, France. Cedex: Editions de Physique, 1987.
Encontre o texto completo da fonte1956-, Strien Sebastian van, Verduyn Lunel S. M e Koninklijke Nederlandse Akademie van Wetenschappen. Afdeling Natuurkunde., eds. Stochastic and spatial structures of dynamical systems: Proceedings of the colloquium, Amsterdam, 26-27 January 1995. Amsterdam: North-Holland, 1996.
Encontre o texto completo da fonteC, McGill T. Device Physics of Superlattices and Small Structures. Ft. Belvoir: Defense Technical Information Center, 1987.
Encontre o texto completo da fonteH, Sowa, ed. Cubic structure types described in their space groups with the aid of frameworks. Karlsruhe, [West Germany]: Fachinformationszentrum Energie, Physik, Mathematik, 1985.
Encontre o texto completo da fonteLeung, Henry Hon Hung. Trellis structure and decoding of lattices. Ottawa: National Library of Canada, 1994.
Encontre o texto completo da fonteAmerican Society of Civil Engineers., ed. Design of latticed steel transmission structures. Reston, Va: American Society of Civil Engineers, 2000.
Encontre o texto completo da fonteAmerican Society of Civil Engineers. Design of latticed steel transmission structures. Reston, Virginia: American Society of Civil Engineers, 2015.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Structures lattices"
Loeb, Arthur L. "Lattices and Lattice Complexes". In Space Structures, 123–25. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0437-4_15.
Texto completo da fonteMeyer-Nieberg, Peter. "Structures in Banach Lattices". In Banach Lattices, 321–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76724-1_5.
Texto completo da fonteLoeb, Arthur L. "Orthorhombic and Tetragonal Lattices". In Space Structures, 139–46. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4612-0437-4_18.
Texto completo da fonteSenthil Kumar, B. V., e Hemen Dutta. "Lattices and Boolean Algebra". In Discrete Mathematical Structures, 223–56. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2020. | Series: Mathematics and its applications : modelling, engineering, and social sciences: CRC Press, 2019. http://dx.doi.org/10.1201/9780429053689-5.
Texto completo da fonteEilbeck, J. C., e A. C. Scott. "Quantum Lattices". In Nonlinear Coherent Structures in Physics and Biology, 1–14. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1343-2_1.
Texto completo da fonteSuryanarayana, C., e M. Grant Norton. "Lattices and Crystal Structures". In X-Ray Diffraction, 21–62. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0148-4_2.
Texto completo da fonteCole, James A. "Non-distributive Cancellative Residuated Lattices". In Ordered Algebraic Structures, 205–12. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3627-4_10.
Texto completo da fonteJipsen, P., e C. Tsinakis. "A Survey of Residuated Lattices". In Ordered Algebraic Structures, 19–56. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3627-4_3.
Texto completo da fonteConrad, P. F., S. M. Lin e D. G. Nelson. "Torsion Classes of Vector Lattices". In Ordered Algebraic Structures, 11–30. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1723-4_2.
Texto completo da fonteTrubin, Alexander. "Antenna Structures on Lattices of". In Lattices of Dielectric Resonators, 97–116. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25148-6_5.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Structures lattices"
Cheng, Dali, Eran Lustig, Kai Wang e Shanhui Fan. "Band structure measurements in multi-dimensional synthetic frequency lattices". In CLEO: Fundamental Science, FTh4D.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fth4d.6.
Texto completo da fonteChen, Jiangce, Martha Baldwin, Sneha Narra e Christopher McComb. "Multi-Lattice Topology Optimization With Lattice Representation Learned by Generative Models". In ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/detc2024-145592.
Texto completo da fonteToropova, Marina M., e Craig A. Steeves. "Thermal Actuation Through Bimaterial Lattices". In ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-8855.
Texto completo da fonteAyaz Uddin, Mohammed, Imad Barsoum, Shanmugam Kumar e Andreas Schiffer. "Enhancing Energy Absorption Capacity of Pyramidal Lattice Structures via Geometrical Tailoring and 3D Printing". In ASME 2024 Aerospace Structures, Structural Dynamics, and Materials Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/ssdm2024-121512.
Texto completo da fonteVenugopal, Vysakh, Matthew McConaha e Sam Anand. "Topology Optimization for Multi-Material Lattice Structures With Tailorable Material Properties for Additive Manufacturing". In ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2989.
Texto completo da fonteHathcock, Megan, Bogdan Popa e Kon-Well Wang. "Continuous Dirac Cone Evolution in Modulated Phononic Crystal". In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95839.
Texto completo da fonteZhang, Botao, Kunal Mhapsekar e Sam Anand. "Design of Variable-Density Structures for Additive Manufacturing Using Gyroid Lattices". In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68047.
Texto completo da fonteKapral, Raymond. "Discrete Dynamics of Spatio-Temporal Structures". In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.is9.
Texto completo da fonteMcConaha, Matthew, e Sam Anand. "Design of Stochastic Lattice Structures for Additive Manufacturing". In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8439.
Texto completo da fonteLishi Zhang, Yi Su e Xiaodong Liu. "AFS Structures and Concept Lattices". In 2006 6th World Congress on Intelligent Control and Automation. IEEE, 2006. http://dx.doi.org/10.1109/wcica.2006.1712820.
Texto completo da fonteRelatórios de organizações sobre o assunto "Structures lattices"
Fry, A. T., L. E. Crocker, M. J. Lodeiro, M. Poole, P. Woolliams, A. Koko, N. Leung, D. England e C. Breheny. Tensile property measurement of lattice structures. National Physical Laboratory, julho de 2023. http://dx.doi.org/10.47120/npl.mat119.
Texto completo da fonteWilliams, James H., e Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, outubro de 1987. http://dx.doi.org/10.21236/ada190037.
Texto completo da fonteWilliams, James H., e Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, outubro de 1987. http://dx.doi.org/10.21236/ada190611.
Texto completo da fonteWilliams, James H., e Jr. Wave Propagation and Dynamics of Lattice Structures. Fort Belvoir, VA: Defense Technical Information Center, outubro de 1985. http://dx.doi.org/10.21236/ada170316.
Texto completo da fonteLiu, Keh-Fei, e Terrence Draper. Lattice QCD Calculation of Nucleon Structure. Office of Scientific and Technical Information (OSTI), agosto de 2016. http://dx.doi.org/10.2172/1323029.
Texto completo da fonteSkowronski, Marek, e D. W. Greve. Growth of Lattice Matched Nitride Alloys and Structures. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1998. http://dx.doi.org/10.21236/ada354115.
Texto completo da fonteBraun, D. W., G. W. Crabtree, H. G. Kaper, G. K. Leaf, D. M. Levine, V. M. Vinokur e A. E. Koshelev. The structure of a moving vortex lattice. Office of Scientific and Technical Information (OSTI), novembro de 1995. http://dx.doi.org/10.2172/179299.
Texto completo da fonteParsa, Z., e S. Tepikian. Overview of the structure resonances in the AGS-Booster lattices. Office of Scientific and Technical Information (OSTI), junho de 1986. http://dx.doi.org/10.2172/1150423.
Texto completo da fonteHughes, Nathan. Computed Tomography (CT) Analysis of 3D Printed Lattice Structures. Office of Scientific and Technical Information (OSTI), maio de 2023. http://dx.doi.org/10.2172/1975633.
Texto completo da fonteWilliams, James H., Nagem Jr. e Raymond J. Computation of Natural Frequencies of Planar Lattice Structure. Fort Belvoir, VA: Defense Technical Information Center, março de 1987. http://dx.doi.org/10.21236/ada185387.
Texto completo da fonte