Literatura científica selecionada sobre o tema "Structures de Van der Waals"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Structures de Van der Waals".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Structures de Van der Waals"
Ren, Ya-Ning, Yu Zhang, Yi-Wen Liu e Lin He. "Twistronics in graphene-based van der Waals structures". Chinese Physics B 29, n.º 11 (outubro de 2020): 117303. http://dx.doi.org/10.1088/1674-1056/abbbe2.
Texto completo da fonteFife, Paul C., e Xiao-Ping Wang. "Periodic structures in a van der Waals fluid". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 128, n.º 2 (1998): 235–50. http://dx.doi.org/10.1017/s0308210500012762.
Texto completo da fonteWang, Yanli, e Yi Ding. "The electronic structures of group-V–group-IV hetero-bilayer structures: a first-principles study". Physical Chemistry Chemical Physics 17, n.º 41 (2015): 27769–76. http://dx.doi.org/10.1039/c5cp04815j.
Texto completo da fonteZhou, Kun, Liya Wang, Ruijie Wang, Chengyuan Wang e Chun Tang. "One Dimensional Twisted Van der Waals Structures Constructed by Self-Assembling Graphene Nanoribbons on Carbon Nanotubes". Materials 15, n.º 22 (18 de novembro de 2022): 8220. http://dx.doi.org/10.3390/ma15228220.
Texto completo da fonteFINKELSTEIN, ALEXEI V., MICHAEL Y. LOBANOV, NIKITA V. DOVIDCHENKO e NATALIA S. BOGATYREVA. "MANY-ATOM VAN DER WAALS INTERACTIONS LEAD TO DIRECTION-SENSITIVE INTERACTIONS OF COVALENT BONDS". Journal of Bioinformatics and Computational Biology 06, n.º 04 (agosto de 2008): 693–707. http://dx.doi.org/10.1142/s0219720008003606.
Texto completo da fonteAnnamalai, Meenakshi, Kalon Gopinadhan, Sang A. Han, Surajit Saha, Hye Jeong Park, Eun Bi Cho, Brijesh Kumar, Abhijeet Patra, Sang-Woo Kim e T. Venkatesan. "Surface energy and wettability of van der Waals structures". Nanoscale 8, n.º 10 (2016): 5764–70. http://dx.doi.org/10.1039/c5nr06705g.
Texto completo da fonteForest, Susan E., e Robert L. Kuczkowski. "The Structures of Cyclopropane−Amine van der Waals Complexes". Journal of the American Chemical Society 118, n.º 1 (janeiro de 1996): 217–24. http://dx.doi.org/10.1021/ja952849z.
Texto completo da fonteDeilmann, Thorsten, Michael Rohlfing e Ursula Wurstbauer. "Light–matter interaction in van der Waals hetero-structures". Journal of Physics: Condensed Matter 32, n.º 33 (19 de maio de 2020): 333002. http://dx.doi.org/10.1088/1361-648x/ab8661.
Texto completo da fonteQuan, Silong, Linghui He e Yong Ni. "Tunable mosaic structures in van der Waals layered materials". Physical Chemistry Chemical Physics 20, n.º 39 (2018): 25428–36. http://dx.doi.org/10.1039/c8cp04360d.
Texto completo da fonteKing, Benjamin T., Bruce C. Noll e Josef Michl. "Cation-π Interactions in the Solid State: Crystal Structures of M+(benzene)2CB11Me12- (M = Tl, Cs, Rb, K, Na) and Li+(toluene)CB11Me12-". Collection of Czechoslovak Chemical Communications 64, n.º 6 (1999): 1001–12. http://dx.doi.org/10.1135/cccc19991001.
Texto completo da fonteTeses / dissertações sobre o assunto "Structures de Van der Waals"
Andrinopoulos, Lampros. "Including van der Waals interactions in first-principles electronic structure calculations". Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/22152.
Texto completo da fonteLee, Hee-Seung. "The structure, spectroscopy and dynamics of Small Van Der Waals Complexes /". The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486572165276376.
Texto completo da fonteSCHMIDT, PER MARTIN. "Structure et dynamique des complexes de van der waals benzene-argon". Paris 11, 1992. http://www.theses.fr/1992PA112315.
Texto completo da fonteWatkins, Jason Derrick. "X-ray structures of P22 c2 repressor-DNA complexes the mechansism of direct and indirect readout /". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26709.
Texto completo da fonteCommittee Chair: Loren D. Williams; Committee Member: Donald Doyle; Committee Member: Nicholas V. Hud; Committee Member: Roger Wartell; Committee Member: Stephen Harvey. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Economides, George. "Investigations of open-shell open-shell Van der Waals complexes". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e27330e0-2eaa-4181-af30-70e8b7a3a692.
Texto completo da fonteConstantinescu, Gabriel Cristian. "Large-scale density functional theory study of van-der-Waals heterostructures". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274876.
Texto completo da fonteWalters, Alan. "Spectroscopy and structure of jet cooled aromatics and van der Waals complexes". Thesis, University of Nottingham, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280097.
Texto completo da fonteSkouteris, Dimitris. "Structure and dynamics of weakly bound complexes". Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301422.
Texto completo da fonteDuval-Été, Marie-Christine. "Structure électronique et mouvements moléculaires dans les complexes de Van der Waals du mercure". Paris 11, 1988. http://www.theses.fr/1988PA112191.
Texto completo da fonteCe travail porte sur l'étude de la structure électronique et vibrationnelle de complexes de van der Waals du mercure. Il met en évidence l'influence de la nature électronique et vibrationnelle du niveau optiquement excité sur les voies de désactivation. L'étude spectroscopique des différents systèmes, mercure-atome : Hg-Ar et mercure-molécule : Hg-N₂ , Hg-CH₄ , Hg-NH₃ et Hg-H₂ 0, conduit à la détermination des potentiels d'interaction van der Waals. Dans le cas du complexe mercure-argon on a pu montrer, par un modèle simple, que pour les premiers états électroniques excités, états corrélés aux niveaux 6³P du mercure, le facteur essentiel décrivant l'interaction van der Waals est l'orientation moyenne de l'orbitale 6³p du mercure par rapport à l'axe internucléaire du complexe. L'étude des états excités supérieurs corrélés à l'état de Rydberg 7³s₁ du mercure a révélé une structure en double puits. L'argon peut occuper deux positions d'équilibre, situé à l'intérieur du nuage électronique de l'orbitale 7s du mercure, le complexe a les caractéristiques de l'ion Hg+-Ar, situé à l'extérieur de ce nuage il forme une molécule de van der Waals très peu liée. Les mouvements moléculaires du complexe : Allongement et torsion et leur influence sur les mécanismes de désactivation, sont plus spécialement étudiés avec le système Hg-N₂. La modélisation des spectres expérimentaux: Excitation de fluorescence, émission, excitation du fragment Hg (6 ³P0), conduit à une description des potentiels d'interaction de l'état fondamental et des états excités atteints. Les mouvements de torsion du complexe peuvent être décrits comme une rotation bloquée de l'azote. Observant une dépendance de la dissociation du complexe avec le niveau vibrationnel excité, on a pu mettre en évidence le rôle du moment angulaire de vibration sur la dissociation du complexe induisant la relaxation intra multiplet du mercure vers le niveau ³P0. Enfin, l'excitation optique des complexes de van der Waals mercure-ammoniac et mercure-eau permet l'observation directe et la caractérisation spectroscopique des complexes collisionnels dont les émissions ont été observées précédemment. Donnant une image précise de la structure électronique, des mouvements moléculaires et des processus de désactivation de ces complexes, cette étude contribue à la compréhension de leur formation et des émissions caractéristiques leur étant liées. Un mécanisme de double échange de charge entre le mercure et la molécule est proposé pour rendre compte des énergies de liaison des complexes les plus liés à l'état excité. Il est de même nature que ceux ayant lieu entre ligands et surfaces métalliques, aussi les complexes très liés peuvent-ils être considérés comme des systèmes catalytiques ou pré-catalytiques
Hay, Henri. "Étude de la structure et des propriétés des polymorphes de SiO2 et B2O3 par méthodes ab initio". Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066318.
Texto completo da fonteDuring this PhD I use density functional theory and quantum Monte Carlo to evaluate the importance of van der Waals effects on the structures, the energies, and the properties of SiO2 and B2O3 polymorphs. I show that exchange-correlation functionals including dispersion effects lead to an error cancellation between an overestimation of the Si-O distances and an underestimation of the Si-O-Si angles in low densities SiO2 polymorphs. By using quantum Monte Carlo calculations, I have predicted with high accuracy the relative energy of a new B2O3 polymorph, which allowed me to evaluate the performances of different exchange-correlation functionals on this material. I then use the best functional possible to compute the mechanical and electronic properties of 25 predicted B2O3 polymorphs. Some of the predicted polymorphs exhibit intriguing mechanical properties, such as negative linear compressibility, auxeticity and anisotropy. These calculations allow me to make a hypothesis explaining the crystallization anomaly in B2O3. They underline a seemingly universal link between low energy polymorphism and ease of vitrification
Livros sobre o assunto "Structures de Van der Waals"
Yeh, Po-Chun. Van der Waals Layered Materials: Surface Morphology, Interlayer Interaction, and Electronic Structure. [New York, N.Y.?]: [publisher not identified], 2015.
Encontre o texto completo da fonteSerrée, Raoul. Amsterdam ommuurd: Het raadsel van de middeleeuwse stadsmuur (1481-1601). Abcoude: Uniepers, 1999.
Encontre o texto completo da fonteParsegian, V. Adrian. Van der Waals forces. New York: Cambridge University Press, 2005.
Encontre o texto completo da fonteHolwill, Matthew. Nanomechanics in van der Waals Heterostructures. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18529-9.
Texto completo da fonteL, Neal Brian, Lenhoff Abraham M e United States. National Aeronautics and Space Administration., eds. Van der Waals interactions involving proteins. New York: Biophysical Society, 1996.
Encontre o texto completo da fonteKipnis, Aleksandr I͡Akovlevich. Van der Waals and molecular sciences. Oxford: Clarendon Press, 1996.
Encontre o texto completo da fonte1926-, Rowlinson J. S., e I︠A︡velov B. E, eds. Van der Waals and molecular science. Oxford: Clarendon Press, 1996.
Encontre o texto completo da fonteHalberstadt, Nadine, e Kenneth C. Janda, eds. Dynamics of Polyatomic Van der Waals Complexes. New York, NY: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-8009-2.
Texto completo da fonteHalberstadt, Nadine. Dynamics of Polyatomic Van der Waals Complexes. Boston, MA: Springer US, 1991.
Encontre o texto completo da fonteNATO Advanced Research Workshop on Dynamics of Polyatomic Van der Waals Complexes (1989 Castéra-Verduzan, France). Dynamics of polyatomic Van der Waals complexes. New York: Plenum Press, 1990.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Structures de Van der Waals"
Horing, Norman J. Morgenstern, Vassilios Fessatidis e Jay D. Mancini. "Atom/Molecule van der Waals Interaction with Graphene". In Low Dimensional Semiconductor Structures, 93–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28424-3_5.
Texto completo da fonteSanchez, Oswaldo, Joung Min Kim e Ganesh Balasubramanian. "Graphene Analogous Elemental van der Waals Structures". In Advances in Nanomaterials, 77–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64717-3_4.
Texto completo da fonteSernelius, Bo E. "Van der Waals Interaction in Spherical Structures". In Fundamentals of van der Waals and Casimir Interactions, 209–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_10.
Texto completo da fonteSernelius, Bo E. "Van der Waals Interaction in Cylindrical Structures". In Fundamentals of van der Waals and Casimir Interactions, 233–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_11.
Texto completo da fonteSernelius, Bo E. "Van der Waals Interaction in Planar Structures". In Fundamentals of van der Waals and Casimir Interactions, 153–207. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_9.
Texto completo da fonteSernelius, Bo E. "Dispersion Interaction in Planar Structures". In Fundamentals of van der Waals and Casimir Interactions, 273–337. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_13.
Texto completo da fonteSernelius, Bo E. "Dispersion Interaction in Spherical Structures". In Fundamentals of van der Waals and Casimir Interactions, 339–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_14.
Texto completo da fonteSernelius, Bo E. "Dispersion Interaction in Cylindrical Structures". In Fundamentals of van der Waals and Casimir Interactions, 373–92. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99831-2_15.
Texto completo da fonteHoward, Brian J. "The Structure and Dynamics of Van Der Waals Molecules". In Structures and Conformations of Non-Rigid Molecules, 137–61. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2074-6_7.
Texto completo da fonteSanchez, Oswaldo, Joung Min Kim e Ganesh Balasubramanian. "Erratum to: Graphene Analogous Elemental van der Waals Structures". In Advances in Nanomaterials, E1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64717-3_7.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Structures de Van der Waals"
Li, Jie, Yirong Guo e Pengying Chang. "Copper Ion Migration in van der Waals CuInP2S6 Devices with Vertical and Lateral Structures". In 2024 IEEE 17th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), 1–3. IEEE, 2024. https://doi.org/10.1109/icsict62049.2024.10831410.
Texto completo da fonteNorden, Tenzin, Luis M. Martinez, Nehan Tarefder, Kevin W. C. Kwock, Luke M. McClintock, Nicholas Olsen, Xiaoyang Zhu et al. "Two-dimensional nonlinear optics with a twist". In CLEO: Fundamental Science, FTh5B.8. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fth5b.8.
Texto completo da fonteZong, Zhen, Ryosuke Morisaki, Kanami Sugiyama, Masahiro Higashi, Takayuki Umakoshi e Prabhat Verma. "Probing Forbidden Low-Frequency Raman Modes in MoS2 via Plasmonic Nanoparticle". In JSAP-Optica Joint Symposia, 17a_A34_9. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/jsapo.2024.17a_a34_9.
Texto completo da fonteRoy, Ajit K., Jonghoon Lee, Dhriti Nepal e John Ferguson. "Electronic Conduction Mechanism in Van Der Waals Flake Thin Film". In ASME 2023 Aerospace Structures, Structural Dynamics, and Materials Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/ssdm2023-108595.
Texto completo da fonteZhu, Kaichen, Xianhu Liang, Bin Yuan, Marco A. Villena, Chao Wen, Tao Wang, Shaochuan Chen, Mario Lanza, Fei Hui e Yuanyuan Shi. "Tristate Resistive Switching in Heterogenous Van Der Waals Dielectric Structures". In 2019 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2019. http://dx.doi.org/10.1109/irps.2019.8720485.
Texto completo da fonteCaliskan, U. "New approach for modeling randomly distributed CNT reinforced polymer nanocomposite with van der Waals interactions". In Advanced Topics in Mechanics of Materials, Structures and Construction. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902592-7.
Texto completo da fonteLoreau, J. "Structure and dynamics of small van der Waals complexes". In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4897805.
Texto completo da fonteCho, Hyunhee, Dong-Jin Shin, Junghyun Sung, Young-Ho Ko e Su-Hyun Gong. "Ultra-thin Photonic Structures for Integration of Quantum Emitters in van der Waals Materials". In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.jw4a.76.
Texto completo da fonteBunte, S. W., J. B. Miller, Z. S. Huang, J. E. Verdasco, C. Wittig e R. A. Beaudet. "Structure determination of the CO−CI2 van der Waals complex". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.tul3.
Texto completo da fonteRosser, David. "High-precision local transfer of van der Waals materials on nanophotonic structures (Conference Presentation)". In 2D Photonic Materials and Devices III, editado por Arka Majumdar, Carlos M. Torres e Hui Deng. SPIE, 2020. http://dx.doi.org/10.1117/12.2543902.
Texto completo da fonteRelatórios de organizações sobre o assunto "Structures de Van der Waals"
Klots, C. E. (Physics and chemistry of van der Waals particles). Office of Scientific and Technical Information (OSTI), outubro de 1990. http://dx.doi.org/10.2172/6608231.
Texto completo da fonteMak, Kin Fai. Understanding Topological Pseudospin Transport in Van Der Waals' Materials. Office of Scientific and Technical Information (OSTI), maio de 2021. http://dx.doi.org/10.2172/1782672.
Texto completo da fonteKim, Philip. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures. Fort Belvoir, VA: Defense Technical Information Center, março de 2015. http://dx.doi.org/10.21236/ada616377.
Texto completo da fonteSandler, S. I. The generalized van der Waals theory of pure fluids and mixtures. Office of Scientific and Technical Information (OSTI), junho de 1990. http://dx.doi.org/10.2172/6382645.
Texto completo da fonteSandler, S. I. (The generalized van der Waals theory of pure fluids and mixtures). Office of Scientific and Technical Information (OSTI), setembro de 1989. http://dx.doi.org/10.2172/5610422.
Texto completo da fonteO'Hara, D. J. Molecular Beam Epitaxy and High-Pressure Studies of van der Waals Magnets. Office of Scientific and Technical Information (OSTI), agosto de 2019. http://dx.doi.org/10.2172/1562380.
Texto completo da fonteMenezes, W. J. C., e M. B. Knickelbein. Metal cluster-rare gas van der Waals complexes: Microscopic models of physisorption. Office of Scientific and Technical Information (OSTI), março de 1994. http://dx.doi.org/10.2172/10132910.
Texto completo da fonteMartinez Milian, Luis. Manipulation of the magnetic properties of van der Waals materials through external stimuli. Office of Scientific and Technical Information (OSTI), maio de 2024. http://dx.doi.org/10.2172/2350595.
Texto completo da fonteGwo, Dz-Hung. Tunable far infrared laser spectroscopy of van der Waals bonds: Ar-NH sub 3. Office of Scientific and Technical Information (OSTI), novembro de 1989. http://dx.doi.org/10.2172/7188608.
Texto completo da fonteFrench, Roger H., Nicole F. Steinmetz e Yingfang Ma. Long Range van der Waals - London Dispersion Interactions For Biomolecular and Inorganic Nanoscale Assembly. Office of Scientific and Technical Information (OSTI), março de 2018. http://dx.doi.org/10.2172/1431216.
Texto completo da fonte