Siga este link para ver outros tipos de publicações sobre o tema: Structure fine de l’exciton.

Artigos de revistas sobre o tema "Structure fine de l’exciton"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Structure fine de l’exciton".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Shiner, D. L., e R. Dixson. "Measuring the fine structure constant using helium fine structure". IEEE Transactions on Instrumentation and Measurement 44, n.º 2 (abril de 1995): 518–21. http://dx.doi.org/10.1109/19.377896.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Blair, David F. "Fine Structure of a Fine Machine". Journal of Bacteriology 188, n.º 20 (1 de outubro de 2006): 7033–35. http://dx.doi.org/10.1128/jb.01016-06.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Forbes, Richard. "Redefining fine-structure". Physics World 19, n.º 11 (novembro de 2006): 19. http://dx.doi.org/10.1088/2058-7058/19/11/30.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Howell, Kathryn E. "Fine Structure Immunocytochemistry". Trends in Cell Biology 4, n.º 1 (janeiro de 1994): 30. http://dx.doi.org/10.1016/0962-8924(94)90037-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Songaila, Antoinette, e Lennox L. Cowie. "Fine-structure variable?" Nature 398, n.º 6729 (abril de 1999): 667–68. http://dx.doi.org/10.1038/19426.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Toth, K. S., P. A. Wilmarth, J. M. Nitschke, R. B. Firestone, K. Vierinen, M. O. Kortelahti e F. T. Avignone. "Fine structure inTm153αdecay". Physical Review C 38, n.º 4 (1 de outubro de 1988): 1932–35. http://dx.doi.org/10.1103/physrevc.38.1932.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Zirker, J. B., e S. Koutchmy. "Prominence fine structure". Solar Physics 127, n.º 1 (maio de 1990): 109–18. http://dx.doi.org/10.1007/bf00158516.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Drake, G. WF. "Progress in helium fine-structure calculations and the fine-structure constant". Canadian Journal of Physics 80, n.º 11 (1 de novembro de 2002): 1195–212. http://dx.doi.org/10.1139/p02-111.

Texto completo da fonte
Resumo:
The long-term goal of this work is to determine the fine-structure constant α from a comparison between theory and experiment for the fine-structure splittings of the helium 1s2p 3PJ states. All known terms of order α5 a.u. (α7 mc2) arising from the electron–electron interaction, and recoil corrections of order α4 µ / M a.u. are evaluated and added to previous tabulation. The predicted energy splittings are ν0,1 = 29 616.946 42(18) MHz and ν1,2 = 2291.154 62(31) MHz. Although the computational uncertainty is much less than ±1 kHz, there is an unexplained discrepancy between theory and experiment of 19.4(1.4) kHz for ν1,2. PACS Nos.: 31.30Jv, 32.10Fn
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Friedman, Sy D. "Coding without fine structure". Journal of Symbolic Logic 62, n.º 3 (setembro de 1997): 808–15. http://dx.doi.org/10.2307/2275573.

Texto completo da fonte
Resumo:
In this paper we prove Jensen's Coding Theorem, assuming ˜ 0#, via a proof that makes no use of the fine structure theory. We do need to quote Jensen's Covering Theorem, whose proof uses fine-structural ideas, but make no direct use of these ideas. The key to our proof is the use of “coding delays.”Coding Theorem (Jensen). Suppose 〈M,A〉 is a model of ZFC + O#does not exist. Then there is an 〈M, A〉-definable class forcing P such that if G ⊆ P is P-generic over 〈M, A〉:(a) 〈M[G],A,G〉 ⊨ NZFC.(b) M[G] ⊨ V = L[R], R ⊆ ωand 〈M[G], A, G〉 ⊨ A,G are definable from the parameter R.In the above statement when we say “〈M, A〉 ⊨ ZFC” we mean that M ⊨ ZFC and in addition M satisfies replacement for formulas that mention A as a predicate. And “P-generic over 〈M, A〉” means that all 〈M, A〉-definable dense classes are met.The consequence of ˜ O# that we need follows directly from the Covering Theorem.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Gibert, A., e F. Bastien. "Fine structure of streamers". Journal of Physics D: Applied Physics 22, n.º 8 (14 de agosto de 1989): 1078–82. http://dx.doi.org/10.1088/0022-3727/22/8/011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Takeda, Yasuhito. "Fine Structure of Starch." Journal of the agricultural chemical society of Japan 68, n.º 11 (1994): 1573–76. http://dx.doi.org/10.1271/nogeikagaku1924.68.1573.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Hourani, E., L. Rosier, G. Berrier-Ronsin, A. Elayi, A. C. Mueller, G. Rappenecker, G. Rotbard et al. "Fine structure inC14emission fromRa223andRa224". Physical Review C 44, n.º 4 (1 de outubro de 1991): 1424–34. http://dx.doi.org/10.1103/physrevc.44.1424.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Kinoshita, Toichiro. "The fine structure constant". Reports on Progress in Physics 59, n.º 11 (1 de novembro de 1996): 1459–92. http://dx.doi.org/10.1088/0034-4885/59/11/003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Thomas, John H., e Nigel O. Weiss. "Fine Structure in Sunspots". Annual Review of Astronomy and Astrophysics 42, n.º 1 (22 de setembro de 2004): 517–48. http://dx.doi.org/10.1146/annurev.astro.42.010803.115226.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Wadsworth, J. "Fine structure superplastic intermetallics". International Materials Reviews 44, n.º 2 (fevereiro de 1999): 59–75. http://dx.doi.org/10.1179/095066099101528225.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Benka, Stephen. "The fine-structure constant". Physics Today 57, n.º 2 (fevereiro de 2004): 9. http://dx.doi.org/10.1063/1.4796393.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Tziotziou, Kostas, e G. Tsiropoula. "Chromospheric fine structure studies". Proceedings of the International Astronomical Union 2, S233 (março de 2006): 173. http://dx.doi.org/10.1017/s1743921306001773.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Sobotka, M., e P. Sütterlin. "Fine structure in sunspots". Astronomy & Astrophysics 380, n.º 2 (dezembro de 2001): 714–18. http://dx.doi.org/10.1051/0004-6361:20011456.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Haeffler, G., U. Ljungblad, I. Yu Kiyan e D. Hanstorp. "Fine structure of As $^-$". Zeitschrift f�r Physik D Atoms, Molecules and Clusters 42, n.º 4 (1 de dezembro de 1997): 263–66. http://dx.doi.org/10.1007/s004600050365.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Nath, Biman. "The fine structure constant". Resonance 20, n.º 5 (maio de 2015): 383–88. http://dx.doi.org/10.1007/s12045-015-0196-1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Sandahl, Ingrid, Urban Brändström e Tima Sergienko. "Fine structure of aurora". International Journal of Remote Sensing 32, n.º 11 (10 de junho de 2011): 2947–72. http://dx.doi.org/10.1080/01431161.2010.541507.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Polyakov, A. "Fine structure of strings". Nuclear Physics B 268, n.º 2 (maio de 1986): 406–12. http://dx.doi.org/10.1016/0550-3213(86)90162-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Tagusari, O., K. Yamazaki, P. Litwak, A. Kojima, J. F. Antaki, M. Watach, A. Holmes et al. "FINE RAHMEN STRUCTURE OF CARBON (FINE TRABECULARIZED CARBON)". ASAIO Journal 43, n.º 2 (março de 1997): 3. http://dx.doi.org/10.1097/00002480-199703000-00010.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Neuhäuser, Hartmut. "Slip Propagation and Fine Structure". Solid State Phenomena 3-4 (janeiro de 1991): 407–15. http://dx.doi.org/10.4028/www.scientific.net/ssp.3-4.407.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Perkowitz, Sidney. "Fine structure and black holes". Physics World 34, n.º 3 (1 de maio de 2021): 68. http://dx.doi.org/10.1088/2058-7058/34/03/37.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Martins, C. J. A. P., F. P. S. A. Ferreira e P. V. Marto. "Varying fine-structure constant cosmography". Physics Letters B 827 (abril de 2022): 137002. http://dx.doi.org/10.1016/j.physletb.2022.137002.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Gilson, James G. "Calculating the Fine‐Structure Constant". Physics Essays 9, n.º 2 (junho de 1996): 342–53. http://dx.doi.org/10.4006/1.3029242.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

TANIDA, Hajime, Makoto HARADA, Takanori TAKIUE e Hirohisa NAGATANI. "X-ray Absorption Fine Structure". Oleoscience 12, n.º 1 (2012): 11–16. http://dx.doi.org/10.5650/oleoscience.12.11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Miyamoto, Toshiyuki, Takashi Hashiguchi, Toru Hirano e Koumei Baba. "Fine Surface Structure of Prostheses." Orthopedics & Traumatology 47, n.º 2 (1998): 454–57. http://dx.doi.org/10.5035/nishiseisai.47.454.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Baloyannis, Stavros J., e Ioannis S. Baloyannis. "The fine structure of ependymomas". CNS Oncology 3, n.º 1 (janeiro de 2014): 49–59. http://dx.doi.org/10.2217/cns.13.64.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Efimov, Sergei P. "Symmetries of fine-structure constant". Advanced Studies in Theoretical Physics 7 (2013): 635–46. http://dx.doi.org/10.12988/astp.2013.3431.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Sapirstein, Jonathan. "Theory, experiment and fine structure". Physics World 13, n.º 7 (julho de 2000): 28–30. http://dx.doi.org/10.1088/2058-7058/13/7/27.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Dumitrescu, Ovidiu. "Fine structure of cluster decays". Physical Review C 49, n.º 3 (1 de março de 1994): 1466–81. http://dx.doi.org/10.1103/physrevc.49.1466.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Wauters, J., J. C. Batchelder, C. R. Bingham, D. J. Blumenthal, L. T. Brown, L. F. Conticchio, C. N. Davids et al. "Fine structure in theαdecay of189Bi". Physical Review C 55, n.º 3 (1 de março de 1997): 1192–96. http://dx.doi.org/10.1103/physrevc.55.1192.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Fox, Harold. "Balancer Fine Structure of thePleurodelesLarva". Acta Zoologica 66, n.º 2 (junho de 1985): 97–110. http://dx.doi.org/10.1111/j.1463-6395.1985.tb00828.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Osborne, Ian S. "Refining the fine-structure constant". Science 360, n.º 6385 (12 de abril de 2018): 166.6–167. http://dx.doi.org/10.1126/science.360.6385.166-f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Nieh, Tai‐Gang, e Jeffrey Wadsworth. "Fine‐structure superplasticity in materials". Journal of the Chinese Institute of Engineers 21, n.º 6 (setembro de 1998): 659–89. http://dx.doi.org/10.1080/02533839.1998.9670427.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Saikia, C. K., e L. J. Burdick. "Fine structure ofPnlwaves from explosions". Journal of Geophysical Research: Solid Earth 96, B9 (10 de agosto de 1991): 14383–401. http://dx.doi.org/10.1029/91jb00921.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Hemici, M., R. Saoudi, E. Descroix, E. Audouard, P. Laporte e F. Spiegelmann. "Fine structure in krypton excimer". Physical Review A 51, n.º 4 (1 de abril de 1995): 3351–54. http://dx.doi.org/10.1103/physreva.51.3351.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Long, Glenis R., Lauren Shaffer, William J. Murphy e Carrick L. Talmadge. "Cochlear fine structure in chinchillas". Journal of the Acoustical Society of America 105, n.º 2 (fevereiro de 1999): 1085. http://dx.doi.org/10.1121/1.425085.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Rowley, John R., e Satish K. Srivastava. "Fine structure of Classopollis exines". Canadian Journal of Botany 64, n.º 12 (1 de dezembro de 1986): 3059–74. http://dx.doi.org/10.1139/b86-405.

Texto completo da fonte
Resumo:
Serial sections for light microscopy or transmission electron microscopy of two Classopollis pollen tetrads show that the exine structure, except for the nexine, has radially arranged rodlike units interwoven with transverse subunits. The nexine consists of strands or thin sheets except in the equatorial infratectal striate band area, where it is up to ca. 1 μm thick. Nexine is absent in the areas of the distal cryptopore and the subequatorial circumpolar infratectal canal. It is very thin or absent in the tetrad scar. Native contrast and reactivity to stain disappeared on immersion of thin sections in 1 M NaOH or HCl or in water. Reactivity to stains was regained after oxidizing the sections in KMnO4. Reactivity to stains appears to be dependent upon non-sporopollenin molecules embedded within exines. The above immersions remove stain reactive sites. Oxidative etching of sporopollenin exposes new sites. The specimens of Classopollis classoides Pflug studied and illustrated were picked from an Upper Jurassic sample (CRC 31519-2) collected at Osmington Mills locality, Dorset, England.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Suganuma, Atsushi. "FINE STRUCTURE OF STAPHYLOCOCCUS AUREUS*". Annals of the New York Academy of Sciences 128, n.º 1 (16 de dezembro de 2006): 26–44. http://dx.doi.org/10.1111/j.1749-6632.1965.tb11627.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Weiss, Nigel. "Fine structure on the Sun". Nature 344, n.º 6269 (abril de 1990): 815–16. http://dx.doi.org/10.1038/344815a0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Kruggel, F., M. K. Brückner, Th Arendt, C. J. Wiggins e D. Y. von Cramon. "Analyzing the neocortical fine-structure". Medical Image Analysis 7, n.º 3 (setembro de 2003): 251–64. http://dx.doi.org/10.1016/s1361-8415(03)00006-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Łącki, Mateusz K., Dirk Valkenborg e Michał P. Startek. "IsoSpec2: Ultrafast Fine Structure Calculator". Analytical Chemistry 92, n.º 14 (5 de junho de 2020): 9472–75. http://dx.doi.org/10.1021/acs.analchem.0c00959.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Cohen, G. M., e M. L. Domeier. "Fine structure of the cupula". Proceedings, annual meeting, Electron Microscopy Society of America 45 (agosto de 1987): 826–27. http://dx.doi.org/10.1017/s0424820100128419.

Texto completo da fonte
Resumo:
The cupula functions as a sensitive biological transducer that undergoes extremely limited mechanical displacements in its normal dynamic range. Cupular displacements are coupled to the bending and stimulation of hair cell cilia. However, details of cupular-ciliary coupling and of cupular attachments to the ampullary crest are unsettled because of difficulties in preserving the cupula without severe distortion from fixation and dehydration. With conventional fixation procedures, the cupula either pulls away from crest or collapses to a fraction of its original volume. Our objective was to reduce cupular shrinkage.We used the inner ears of 1 day-old chicks (White Leghorn) and 3 month-old mice (C57BL/6). The inner ears were fixed 3-72 h in 1.5-1.75% glutaraldehyde in 150 mM KC1 buffered with potassium phosphate, pH 7.3. To the basic solution, we sometimes added spermine (0.1%) or lysine (0.25%).
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Muller, R. "Fine Structure of Photospheric Faculae". Symposium - International Astronomical Union 138 (1990): 85–96. http://dx.doi.org/10.1017/s0074180900044028.

Texto completo da fonte
Resumo:
Properties of the photospheric bright points associated with magnetic flux tubes are reviewed both in faculae (facular points) and in the photospheric network (network bright points - NBPs) out of active regions. A special attention is given to their size distribution, to their location relative to the granular, mesogranular and supergranular patterns, and to their relation with the small scale magnetic features, both in active and quiet regions. In particular a new granulation movie reveals that NBPs form in large intergranular spaces, compressed by the surrounding granules.At the center of the solar disk, bright points are much brighter than the mean photosphere; their contrast increases toward the limb up to μ = 0.3 − 0.2 and then decreases to the limb, as it is now widely accepted. But, all the published contrasts are of little significance because of center-to-limb selection effects. New center-to-limb contrast variations of individual network bright points are presented, which take into account the selection effects.
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Łącki, Mateusz K., Michał Startek, Dirk Valkenborg e Anna Gambin. "IsoSpec: Hyperfast Fine Structure Calculator". Analytical Chemistry 89, n.º 6 (8 de março de 2017): 3272–77. http://dx.doi.org/10.1021/acs.analchem.6b01459.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Bello-Pérez, L. A., O. Paredes-López, P. Roger e P. Colonna. "Amylopectin—properties and fine structure". Food Chemistry 56, n.º 2 (junho de 1996): 171–76. http://dx.doi.org/10.1016/0308-8146(95)00152-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Lazutin, L. L., R. Rasinkangas, T. V. Kozelova, A. Korth, H. Singer, G. Reeves, W. Riedler, K. Torkar e B. B. Gvozdevsky. "Observations of substorm fine structure". Annales Geophysicae 16, n.º 7 (31 de julho de 1998): 775–86. http://dx.doi.org/10.1007/s00585-998-0775-5.

Texto completo da fonte
Resumo:
Abstract. Particle and magnetic field measurements on the CRRES satellite were used, together with geosynchronous satellites and ground-based observations, to investigate the fine structure of a magnetospheric substorm on February 9, 1991. Using the variations in the electron fluxes, the substorm activity was divided into several intensifications lasting about 3–15 minutes each. The two main features of the data were: (1) the intensifications showed internal fine structure in the time scale of about 2 minutes or less. We call these shorter periods activations. Energetic electrons and protons at the closest geosynchronous spacecraft (1990 095) were found to have comparable activation structure. (2) The energetic (>69 keV) proton injections were delayed with respect to electron injections, and actually coincided in time with the end of the intensifications and partial returns to locally more stretched field line configuration. We propose that the energetic protons could be able to control the dynamics of the system locally be quenching the ongoing intensification and possibly preparing the final large-scale poleward movement of the activity. It was also shown that these protons originated from the same intensification as the preceeding electrons. Therefore, the substorm instability responsible for the intensifications could introduce a negative feedback loop into the system, creating the observed fine structure with the intensification time scales.Key words. Magnetospheric Physics (Storms and substorms).
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia