Artigos de revistas sobre o tema "Structure en coiled-coil"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Structure en coiled-coil".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Kwon, Min Jee, Myeong Hoon Han, Joshua A. Bagley, Do Young Hyeon, Byung Su Ko, Yun Mi Lee, In Jun Cha et al. "Coiled-coil structure-dependent interactions between polyQ proteins and Foxo lead to dendrite pathology and behavioral defects". Proceedings of the National Academy of Sciences 115, n.º 45 (22 de outubro de 2018): E10748—E10757. http://dx.doi.org/10.1073/pnas.1807206115.
Texto completo da fonteVajda, Tamás, e András Perczel. "The clear and dark sides of water: influence on the coiled coil folding domain". Biomolecular Concepts 7, n.º 3 (1 de junho de 2016): 189–95. http://dx.doi.org/10.1515/bmc-2016-0005.
Texto completo da fonteFu, Ruijiang, Wu-Pei Su e Hongxing He. "Direct Phasing of Coiled-Coil Protein Crystals". Crystals 12, n.º 11 (20 de novembro de 2022): 1674. http://dx.doi.org/10.3390/cryst12111674.
Texto completo da fonteWilbur, Jeremy D., Peter K. Hwang, Frances M. Brodsky e Robert J. Fletterick. "Accommodation of structural rearrangements in the huntingtin-interacting protein 1 coiled-coil domain". Acta Crystallographica Section D Biological Crystallography 66, n.º 3 (12 de fevereiro de 2010): 314–18. http://dx.doi.org/10.1107/s0907444909054535.
Texto completo da fonteThomas, Jens M. H., Ronan M. Keegan, Daniel J. Rigden e Owen R. Davies. "Extending the scope of coiled-coil crystal structure solution by AMPLE through improved ab initio modelling". Acta Crystallographica Section D Structural Biology 76, n.º 3 (25 de fevereiro de 2020): 272–84. http://dx.doi.org/10.1107/s2059798320000443.
Texto completo da fonteCaillat, Christophe, Alexander Fish, Dafni-Eleftheria Pefani, Stavros Taraviras, Zoi Lygerou e Anastassis Perrakis. "The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins". Acta Crystallographica Section D Biological Crystallography 71, n.º 11 (31 de outubro de 2015): 2278–86. http://dx.doi.org/10.1107/s1399004715016892.
Texto completo da fonteAlminaite, Agne, Vera Backström, Antti Vaheri e Alexander Plyusnin. "Oligomerization of hantaviral nucleocapsid protein: charged residues in the N-terminal coiled-coil domain contribute to intermolecular interactions". Journal of General Virology 89, n.º 9 (1 de setembro de 2008): 2167–74. http://dx.doi.org/10.1099/vir.0.2008/004044-0.
Texto completo da fonteThomas, Jens M. H., Ronan M. Keegan, Jaclyn Bibby, Martyn D. Winn, Olga Mayans e Daniel J. Rigden. "Routine phasing of coiled-coil protein crystal structures withAMPLE". IUCrJ 2, n.º 2 (26 de fevereiro de 2015): 198–206. http://dx.doi.org/10.1107/s2052252515002080.
Texto completo da fonteKuruba, Balaganesh, Marta Kaczmarek, Małgorzata Kęsik-Brodacka, Magdalena Fojutowska, Małgorzata Śliwinska, Alla S. Kostyukova e Joanna Moraczewska. "Structural Effects of Disease-Related Mutations in Actin-Binding Period 3 of Tropomyosin". Molecules 26, n.º 22 (19 de novembro de 2021): 6980. http://dx.doi.org/10.3390/molecules26226980.
Texto completo da fonteGáspári, Zoltán, e László Nyitray. "Coiled coils as possible models of protein structure evolution". BioMolecular Concepts 2, n.º 3 (1 de junho de 2011): 199–210. http://dx.doi.org/10.1515/bmc.2011.015.
Texto completo da fonteBhairosing-Kok, Doreth, Flora S. Groothuizen, Alexander Fish, Shreya Dharadhar, Herrie H. K. Winterwerp e Titia K. Sixma. "Sharp kinking of a coiled-coil in MutS allows DNA binding and release". Nucleic Acids Research 47, n.º 16 (2 de agosto de 2019): 8888–98. http://dx.doi.org/10.1093/nar/gkz649.
Texto completo da fonteFerron, François, David Blocquel, Johnny Habchi, Eric Durand, Marion Sevajol, Jenny Erales, Nicolas Papageorgiou e Sonia Longhi. "Impact of crystal packing on coiled-coil flexibility." Acta Crystallographica Section A Foundations and Advances 70, a1 (5 de agosto de 2014): C1599. http://dx.doi.org/10.1107/s2053273314084009.
Texto completo da fonteJokar, Mojtaba, e Korosh Torabi. "Thermodynamics of a Coiled-Coil Protein Structure". Biophysical Journal 114, n.º 3 (fevereiro de 2018): 580a. http://dx.doi.org/10.1016/j.bpj.2017.11.3174.
Texto completo da fonteHanukoglu, Israel, e Liora Ezra. "Proteopedia entry: Coiled-coil structure of keratins". Biochemistry and Molecular Biology Education 42, n.º 1 (22 de novembro de 2013): 93–94. http://dx.doi.org/10.1002/bmb.20746.
Texto completo da fonteCheng, Haiyun Y., Anthony P. Schiavone e Thomas E. Smithgall. "A Point Mutation in the N-Terminal Coiled-Coil Domain Releases c-Fes Tyrosine Kinase Activity and Survival Signaling in Myeloid Leukemia Cells". Molecular and Cellular Biology 21, n.º 18 (15 de setembro de 2001): 6170–80. http://dx.doi.org/10.1128/mcb.21.18.6170-6180.2001.
Texto completo da fonteMaerz, Anne L., Rob J. Center, Bruce E. Kemp, Bostjan Kobe e Pantelis Poumbourios. "Functional Implications of the Human T-Lymphotropic Virus Type 1 Transmembrane Glycoprotein Helical Hairpin Structure". Journal of Virology 74, n.º 14 (15 de julho de 2000): 6614–21. http://dx.doi.org/10.1128/jvi.74.14.6614-6621.2000.
Texto completo da fonteHawkins, Rhoda J., e Tom C. B. McLeish. "Dynamic allostery of protein alpha helical coiled-coils". Journal of The Royal Society Interface 3, n.º 6 (16 de agosto de 2005): 125–38. http://dx.doi.org/10.1098/rsif.2005.0068.
Texto completo da fonteAhn, Jinsook, Soyeon Jeong, So-Mi Kang, Inseong Jo, Bum-Joon Park e Nam-Chul Ha. "Separation of Coiled-Coil Structures in Lamin A/C Is Required for the Elongation of the Filament". Cells 10, n.º 1 (31 de dezembro de 2020): 55. http://dx.doi.org/10.3390/cells10010055.
Texto completo da fonteNefedova, Victoria V., Sergey Y. Kleymenov, Irina V. Safenkova, Dmitrii I. Levitsky e Alexander M. Matyushenko. "Neurofilament Light Protein Rod Domain Exhibits Structural Heterogeneity". Biomolecules 14, n.º 1 (9 de janeiro de 2024): 85. http://dx.doi.org/10.3390/biom14010085.
Texto completo da fonteDel Priore, V., C. Heath, C. Snay, A. MacMillan, L. Gorsch, S. Dagher e C. Cole. "A structure/function analysis of Rat7p/Nup159p, an essential nucleoporin of Saccharomyces cerevisiae". Journal of Cell Science 110, n.º 23 (1 de dezembro de 1997): 2987–99. http://dx.doi.org/10.1242/jcs.110.23.2987.
Texto completo da fonteLópez-García, Patricia, Melis Goktas, Ana E. Bergues-Pupo, Beate Koksch, Daniel Varón Silva e Kerstin G. Blank. "Structural determinants of coiled coil mechanics". Physical Chemistry Chemical Physics 21, n.º 18 (2019): 9145–49. http://dx.doi.org/10.1039/c9cp00665f.
Texto completo da fonteYao, Deqiang, Maia Cherney e Miroslaw Cygler. "Structure of the N-terminal domain of the effector protein LegC3 fromLegionella pneumophila". Acta Crystallographica Section D Biological Crystallography 70, n.º 2 (29 de janeiro de 2014): 436–41. http://dx.doi.org/10.1107/s139900471302991x.
Texto completo da fonteThen, Andre, Haotian Zhang, Bashar Ibrahim e Stefan Schuster. "Bioinformatics Analysis of the Periodicity in Proteins with Coiled-Coil Structure—Enumerating All Decompositions of Sequence Periods". International Journal of Molecular Sciences 23, n.º 15 (4 de agosto de 2022): 8692. http://dx.doi.org/10.3390/ijms23158692.
Texto completo da fonteThorn, Kurt S., Jeffrey A. Ubersax e Ronald D. Vale. "Engineering the Processive Run Length of the Kinesin Motor". Journal of Cell Biology 151, n.º 5 (27 de novembro de 2000): 1093–100. http://dx.doi.org/10.1083/jcb.151.5.1093.
Texto completo da fonteWu, Shuai, Yunjiao He, Xianxiu Qiu, Wenchao Yang, Wenchao Liu, Xiaohua Li, Yan Li et al. "Targeting the potent Beclin 1–UVRAG coiled-coil interaction with designed peptides enhances autophagy and endolysosomal trafficking". Proceedings of the National Academy of Sciences 115, n.º 25 (4 de junho de 2018): E5669—E5678. http://dx.doi.org/10.1073/pnas.1721173115.
Texto completo da fonteZhang, Yuchen, Richard J. Alsop, Asfia Soomro, Fei-Chi Yang e Maikel C. Rheinstädter. "Effect of shampoo, conditioner and permanent waving on the molecular structure of human hair". PeerJ 3 (1 de outubro de 2015): e1296. http://dx.doi.org/10.7717/peerj.1296.
Texto completo da fonteXiao, Qiang, Dallin S. Ashton, Zachary B. Jones, Katherine P. Thompson e Joshua L. Price. "Long-range PEG stapling: macrocyclization for increased protein conformational stability and resistance to proteolysis". RSC Chemical Biology 1, n.º 4 (2020): 273–80. http://dx.doi.org/10.1039/d0cb00075b.
Texto completo da fonteDames, Sonja A., Richard A. Kammerer, Ronald Wiltscheck, Jürgen Engel e Andrei T. Alexandrescu. "NMR structure of a parallel homotrimeric coiled coil". Nature Structural & Molecular Biology 5, n.º 8 (agosto de 1998): 687–91. http://dx.doi.org/10.1038/90444.
Texto completo da fonteDowling, L. M., W. G. Crewther e D. A. Parry. "Secondary structure of component 8c-1 of α-keratin. An analysis of the amino acid sequence". Biochemical Journal 236, n.º 3 (15 de junho de 1986): 705–12. http://dx.doi.org/10.1042/bj2360705.
Texto completo da fonteLudwiczak, Jan, Aleksander Winski, Krzysztof Szczepaniak, Vikram Alva e Stanislaw Dunin-Horkawicz. "DeepCoil—a fast and accurate prediction of coiled-coil domains in protein sequences". Bioinformatics 35, n.º 16 (2 de janeiro de 2019): 2790–95. http://dx.doi.org/10.1093/bioinformatics/bty1062.
Texto completo da fonteCarter, Andrew P., e Ronald D. Vale. "Communication between the AAA+ ring and microtubule-binding domain of dyneinThis paper is one of a selection of papers published in this special issue entitled 8th International Conference on AAA Proteins and has undergone the Journal's usual peer review process." Biochemistry and Cell Biology 88, n.º 1 (fevereiro de 2010): 15–21. http://dx.doi.org/10.1139/o09-127.
Texto completo da fonteChoi, Jin Hyeong, Jun Ho Noh e Changsoon Choi. "Highly Elastically Deformable Coiled CNT/Polymer Fibers for Wearable Strain Sensors and Stretchable Supercapacitors". Sensors 23, n.º 4 (20 de fevereiro de 2023): 2359. http://dx.doi.org/10.3390/s23042359.
Texto completo da fonteMeseroll, Rebecca A., Patricia Occhipinti e Amy S. Gladfelter. "Septin Phosphorylation and Coiled-Coil Domains Function in Cell and Septin Ring Morphology in the Filamentous Fungus Ashbya gossypii". Eukaryotic Cell 12, n.º 2 (30 de novembro de 2012): 182–93. http://dx.doi.org/10.1128/ec.00251-12.
Texto completo da fonteMarin, E. P., e R. R. Neubig. "Lack of association of G-protein β2- and γ2-subunit N-terminal fragments provides evidence against the coiled-coil model of subunit-βγ assembly". Biochemical Journal 309, n.º 2 (15 de julho de 1995): 377–80. http://dx.doi.org/10.1042/bj3090377.
Texto completo da fonteDi Palma, Francesco, Gian Luca Daino, Venkata Krishnan Ramaswamy, Angela Corona, Aldo Frau, Elisa Fanunza, Attilio V. Vargiu, Enzo Tramontano e Paolo Ruggerone. "Relevance of Ebola virus VP35 homo-dimerization on the type I interferon cascade inhibition". Antiviral Chemistry and Chemotherapy 27 (janeiro de 2019): 204020661988922. http://dx.doi.org/10.1177/2040206619889220.
Texto completo da fonteOdgren, Paul R., Lawrence W. Harvie e Edward G. Fey. "Phylogenetic occurrence of coiled coil proteins: Implications for tissue structure in metazoa via a coiled coil tissue matrix". Proteins: Structure, Function, and Genetics 24, n.º 4 (abril de 1996): 467–84. http://dx.doi.org/10.1002/(sici)1097-0134(199604)24:4<467::aid-prot6>3.0.co;2-b.
Texto completo da fonteDrennan, Amanda C., Shivaani Krishna, Mark A. Seeger, Michael P. Andreas, Jennifer M. Gardner, Emily K. R. Sether, Sue L. Jaspersen e Ivan Rayment. "Structure and function of Spc42 coiled-coils in yeast centrosome assembly and duplication". Molecular Biology of the Cell 30, n.º 12 (junho de 2019): 1505–22. http://dx.doi.org/10.1091/mbc.e19-03-0167.
Texto completo da fonteGong, Xinyu, Yingli Wang, Yuqian Zhou e Lifeng Pan. "Structure of the WIPI3/ATG16L1 Complex Reveals the Molecular Basis for the Recruitment of the ATG12~ATG5-ATG16L1 Complex by WIPI3". Cells 13, n.º 24 (20 de dezembro de 2024): 2113. https://doi.org/10.3390/cells13242113.
Texto completo da fonteJacques, David, Cy Jeffries, Matthew Caines, Michael Lammers, Donna Mallery, Amanda Price, Stephen McLaughlin, Chris Johnson, Dmitri Svergun e Leo James. "TRIM protein domain topology and implications for antiviral immunity". Acta Crystallographica Section A Foundations and Advances 70, a1 (5 de agosto de 2014): C243. http://dx.doi.org/10.1107/s2053273314097563.
Texto completo da fonteCornillez-Ty, Cromwell T., e David W. Lazinski. "Determination of the Multimerization State of the Hepatitis Delta Virus Antigens In Vivo". Journal of Virology 77, n.º 19 (1 de outubro de 2003): 10314–26. http://dx.doi.org/10.1128/jvi.77.19.10314-10326.2003.
Texto completo da fonteTaylor, Keenan C., Massimo Buvoli, Elif Nihal Korkmaz, Ada Buvoli, Yuqing Zheng, Nathan T. Heinze, Qiang Cui, Leslie A. Leinwand e Ivan Rayment. "Skip residues modulate the structural properties of the myosin rod and guide thick filament assembly". Proceedings of the National Academy of Sciences 112, n.º 29 (6 de julho de 2015): E3806—E3815. http://dx.doi.org/10.1073/pnas.1505813112.
Texto completo da fonteNautiyal, Shivani, e Tom Alber. "Crystal structure of a designed, thermostable, heterotrimeric coiled coil". Protein Science 8, n.º 1 (31 de dezembro de 2008): 84–90. http://dx.doi.org/10.1110/ps.8.1.84.
Texto completo da fonteBassel-Duby, Rhonda, Anula Jayasuriya, Devjani Chatterjee, Nahum Sonenberg, Jacob V. Maizel e Bernard N. Fields. "Sequence of reovirus haemagglutinin predicts a coiled-coil structure". Nature 315, n.º 6018 (maio de 1985): 421–23. http://dx.doi.org/10.1038/315421a0.
Texto completo da fonteSato, Yusuke, Ryutaro Shirakawa, Hisanori Horiuchi, Naoshi Dohmae, Shuya Fukai e Osamu Nureki. "Asymmetric Coiled-Coil Structure with Guanine Nucleotide Exchange Activity". Structure 15, n.º 2 (fevereiro de 2007): 245–52. http://dx.doi.org/10.1016/j.str.2007.01.003.
Texto completo da fonteHitchcock-DeGregori, Sarah E., Stephen F. Lewis e Tony M. T. Chou. "Tropomyosin lysine reactivities and relationship to coiled-coil structure". Biochemistry 24, n.º 13 (18 de junho de 1985): 3305–14. http://dx.doi.org/10.1021/bi00334a035.
Texto completo da fonteLin, Xingcheng, Jeffrey K. Noel, Qinghua Wang, Jianpeng Ma e José N. Onuchic. "Atomistic simulations indicate the functional loop-to-coiled-coil transition in influenza hemagglutinin is not downhill". Proceedings of the National Academy of Sciences 115, n.º 34 (16 de julho de 2018): E7905—E7913. http://dx.doi.org/10.1073/pnas.1805442115.
Texto completo da fonteThomas, Jens, Ronan Keegan, Jaclyn Bibby, Martyn Winn, Olga Mayans e Daniel Rigden. "Rapid molecular replacement of coiled-coil and transmembrane proteins with AMPLE". Acta Crystallographica Section A Foundations and Advances 70, a1 (5 de agosto de 2014): C347. http://dx.doi.org/10.1107/s2053273314096521.
Texto completo da fonteHoenger, A., S. Sack, M. Thormählen, A. Marx, J. Müller, H. Gross e E. Mandelkow. "Image Reconstructions of Microtubules Decorated with Monomeric and Dimeric Kinesins: Comparison with X-Ray Structure and Implications for Motility". Journal of Cell Biology 141, n.º 2 (20 de abril de 1998): 419–30. http://dx.doi.org/10.1083/jcb.141.2.419.
Texto completo da fontePellegrino, Simone, Daniele de Sanctis, Sean McSweeney e Joanna Timmins. "Expression, purification and preliminary structural analysis of the coiled-coil domain ofDeinococcus radioduransRecN". Acta Crystallographica Section F Structural Biology and Crystallization Communications 68, n.º 2 (26 de janeiro de 2012): 218–21. http://dx.doi.org/10.1107/s1744309111055187.
Texto completo da fonteHoh, François, Marilyne Uzest, Martin Drucker, Célia Plisson-Chastang, Patrick Bron, Stéphane Blanc e Christian Dumas. "Structural Insights into the Molecular Mechanisms of Cauliflower Mosaic Virus Transmission by Its Insect Vector". Journal of Virology 84, n.º 9 (24 de fevereiro de 2010): 4706–13. http://dx.doi.org/10.1128/jvi.02662-09.
Texto completo da fonte