Literatura científica selecionada sobre o tema "Structure en coiled-coil"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Structure en coiled-coil".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Structure en coiled-coil"
Kwon, Min Jee, Myeong Hoon Han, Joshua A. Bagley, Do Young Hyeon, Byung Su Ko, Yun Mi Lee, In Jun Cha et al. "Coiled-coil structure-dependent interactions between polyQ proteins and Foxo lead to dendrite pathology and behavioral defects". Proceedings of the National Academy of Sciences 115, n.º 45 (22 de outubro de 2018): E10748—E10757. http://dx.doi.org/10.1073/pnas.1807206115.
Texto completo da fonteVajda, Tamás, e András Perczel. "The clear and dark sides of water: influence on the coiled coil folding domain". Biomolecular Concepts 7, n.º 3 (1 de junho de 2016): 189–95. http://dx.doi.org/10.1515/bmc-2016-0005.
Texto completo da fonteFu, Ruijiang, Wu-Pei Su e Hongxing He. "Direct Phasing of Coiled-Coil Protein Crystals". Crystals 12, n.º 11 (20 de novembro de 2022): 1674. http://dx.doi.org/10.3390/cryst12111674.
Texto completo da fonteWilbur, Jeremy D., Peter K. Hwang, Frances M. Brodsky e Robert J. Fletterick. "Accommodation of structural rearrangements in the huntingtin-interacting protein 1 coiled-coil domain". Acta Crystallographica Section D Biological Crystallography 66, n.º 3 (12 de fevereiro de 2010): 314–18. http://dx.doi.org/10.1107/s0907444909054535.
Texto completo da fonteThomas, Jens M. H., Ronan M. Keegan, Daniel J. Rigden e Owen R. Davies. "Extending the scope of coiled-coil crystal structure solution by AMPLE through improved ab initio modelling". Acta Crystallographica Section D Structural Biology 76, n.º 3 (25 de fevereiro de 2020): 272–84. http://dx.doi.org/10.1107/s2059798320000443.
Texto completo da fonteCaillat, Christophe, Alexander Fish, Dafni-Eleftheria Pefani, Stavros Taraviras, Zoi Lygerou e Anastassis Perrakis. "The structure of the GemC1 coiled coil and its interaction with the Geminin family of coiled-coil proteins". Acta Crystallographica Section D Biological Crystallography 71, n.º 11 (31 de outubro de 2015): 2278–86. http://dx.doi.org/10.1107/s1399004715016892.
Texto completo da fonteAlminaite, Agne, Vera Backström, Antti Vaheri e Alexander Plyusnin. "Oligomerization of hantaviral nucleocapsid protein: charged residues in the N-terminal coiled-coil domain contribute to intermolecular interactions". Journal of General Virology 89, n.º 9 (1 de setembro de 2008): 2167–74. http://dx.doi.org/10.1099/vir.0.2008/004044-0.
Texto completo da fonteThomas, Jens M. H., Ronan M. Keegan, Jaclyn Bibby, Martyn D. Winn, Olga Mayans e Daniel J. Rigden. "Routine phasing of coiled-coil protein crystal structures withAMPLE". IUCrJ 2, n.º 2 (26 de fevereiro de 2015): 198–206. http://dx.doi.org/10.1107/s2052252515002080.
Texto completo da fonteKuruba, Balaganesh, Marta Kaczmarek, Małgorzata Kęsik-Brodacka, Magdalena Fojutowska, Małgorzata Śliwinska, Alla S. Kostyukova e Joanna Moraczewska. "Structural Effects of Disease-Related Mutations in Actin-Binding Period 3 of Tropomyosin". Molecules 26, n.º 22 (19 de novembro de 2021): 6980. http://dx.doi.org/10.3390/molecules26226980.
Texto completo da fonteGáspári, Zoltán, e László Nyitray. "Coiled coils as possible models of protein structure evolution". BioMolecular Concepts 2, n.º 3 (1 de junho de 2011): 199–210. http://dx.doi.org/10.1515/bmc.2011.015.
Texto completo da fonteTeses / dissertações sobre o assunto "Structure en coiled-coil"
Gutwin, Karl N. (Karl Nickolai). "Computational prediction of coiled-coil interaction structure specificity". Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/47880.
Texto completo da fontePage 224 blank.
Includes bibliographical references.
The alpha-helical coiled coil is a protein sequence and structural motif that consists of two or more helices in a parallel or antiparallel orientation supercoiling around a central axis. Coiled coils have been observed in a wide range of protein families, and many studies have focused on their sequence and structural diversity over the past half-century. In particular, the observation that coiled coils can be involved in determining protein-protein interactions and protein architectures has prompted the developments of methods to predict the structure of a coiled-coil complex from sequence information alone. In this thesis, I discuss the development of a structurally annotated database of coiled-coil sequence useful for training statistics-based methods of coiled-coil structure prediction. This database was used to retrain and stringently cross-validate the Multicoil method of predicting coiled-coil oligomerization state. In addition, I describe recent work using implicit and explicit structure models to predict dimeric coiled-coil orientation and alignment. Improvements to existing models, insight into coiled-coil structure determinants, and the future of coiled-coil prediction are also discussed.
by Karl N. Gutwin.
Ph.D.
Allan, Robert Douglas. "Computational analysis and experimental characterisation of natural antiparallel coiled-coil motifs". Thesis, University of Sussex, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343369.
Texto completo da fonteOdgren, Paul R. "Molecular Characterization of Mitofilin, a Novel, Mitochondrial, Coiled Coil Protein, and the Relationship Between Organism Complexity and Coiled Coil Protein-Mediated Structure: A Dissertation". eScholarship@UMMS, 1995. https://escholarship.umassmed.edu/gsbs_diss/28.
Texto completo da fonteShen, Wei Tirrell David A. Tirrell David A. "Structure, dynamics, and properties of artificial protein hydrogels assembled through coiled-coil domains /". Diss., Pasadena, Calif. : California Institute of Technology, 2005. http://resolver.caltech.edu/CaltechETD:etd-05132005-114413.
Texto completo da fonteMakarov, Alexandr. "New insights into the structure and assembly of nuclear lamins from chemical cross-linking and mass spectrometry". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28872.
Texto completo da fonteChang, Eric P. "The Rational Design of Coiled-Coil Peptides towards Understanding Protein-Crystal Interactions and Amorphous-to-Crystalline Transitions". Bowling Green State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1363258701.
Texto completo da fonteSmith, Mason Scott. "Measuring the Interaction and Cooperativity Between Ionic, Aromatic, and Nonpolar Amino Acids in Protein Structure". BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7443.
Texto completo da fonteBehrens, Caroline Anna Julie [Verfasser], Karin [Akademischer Betreuer] Kühnel, Michael [Akademischer Betreuer] Thumm, Markus [Akademischer Betreuer] Zweckstetter e Marina [Akademischer Betreuer] Rodnina. "Crystal Structure and Characterization of the SCOC Coiled Coil Domain / Caroline Anna Julie Behrens. Gutachter: Michael Thumm ; Markus Zweckstetter ; Marina Rodnina. Betreuer: Karin Kühnel". Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2014. http://d-nb.info/1054821992/34.
Texto completo da fonteFitzgerald, Amanda Ann. "Folding and Assembly of Multimeric Proteins: Dimeric HIV-1 Protease and a Trimeric Coiled Coil Component of a Complex Hemoglobin Scaffold: A Dissertation". eScholarship@UMMS, 2007. https://escholarship.umassmed.edu/gsbs_diss/341.
Texto completo da fonteXu, Zeren. "Le rôle et les mécanismes de l'assemblage de REMORIN". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0307.
Texto completo da fonteRemorins are multifunctional proteins that play vital roles in plant immunity, development, and symbiosis by associating with the plasma membrane and sequestering specific lipids into functional membrane nanodomains. These proteins are classified into a multigenic family with six groups characterized by distinct protein-domain compositions. All remorin family members share a C-terminal membrane anchor (REM-CA), a homo-oligomerization domain, and the N-terminal is an intrinsically disordered region (IDR) of variable length. Uniquely, REMs bypass the secretory pathway for membrane targeting and localize to different nanodomains based on their phylogenetic group. In this study, we combined Nuclear Magnetic Resonance (NMR) spectroscopy, protein structure calculations, and advanced molecular dynamics (MD) simulations to reveal the structural and dynamic properties of REMs. We discovered that remorins form stable pre-structured coiled-coil dimers in the cytosol, which act as tunable nanodomain-targeting units. These dimers feature a REM-dependent barcode-like positive surface charge before membrane association. Furthermore, the REM-CAs exhibit structural and dynamic variations across the family, providing a selective platform for phospholipid binding upon membrane contact. The N-terminal IDR forms a flexible fuzzy structural ensemble around the coiled-coil core. The C-terminal anchors create avidity through multivalent electrostatic interactions between anionic lipid headgroups and the positively charged dimer surface, supporting a synergistic mechanism between REM-CA and the coiled-coil domain to segregate lipid-protein nanodomains. Solid-state NMR and coarse-grained MD simulations further revealed the distinct behavior of REM-CAs when associated to the lipid membrane. We observe differences in membrane association profiles of the REM-CAs and of the charged coiled-coils dependent on the dimer surface charges and dependent on the lipids present in the membrane. Coiled-coil stability and the intensity of membrane association is tuned by the lipid headgroups on the membrane surface. The insights enhance our understanding of the molecular mechanisms underlying the role of remorins in membrane organization in plants, the distinct localizations of remorins in membrane nanodomains and the structural factors contributing to the different remorin functions. This research lays the groundwork for future studies to elucidate the complex behaviors of membrane-associated REMs and their structural tuning during cellular signaling and defense mechanisms
Capítulos de livros sobre o assunto "Structure en coiled-coil"
Fowlkes, D. M., N. T. Mullis, C. M. Comeau e G. R. Crabtree. "Fibrinogen evolution - The structure and evolution of fibrinogen: The coiled coil region". In Structural variants and interactions, editado por A. Henschen e B. Henssel, 11–22. Berlin, Boston: De Gruyter, 1985. http://dx.doi.org/10.1515/9783110855951-003.
Texto completo da fonteLee, Myung Kyu, Jeong Kon Seo, Hee Kyung Kim, Ju Hyun Cho e Kil Lyong Kim. "Higher Anti-HIV-1 Activity of Peptides Derived from gp41 Carboxyl-Terminal Coiled Coil Structure of HIV-1 89.6 Strain". In Peptides: The Wave of the Future, 585–86. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0464-0_271.
Texto completo da fonteSapperstein, Stephanie K., e M. Gerard Waters. "p115". In Guidebook to the Cytoskeletal and Motor Proteins, 538–40. Oxford University PressOxford, 1999. http://dx.doi.org/10.1093/oso/9780198599579.003.00163.
Texto completo da fonteLongtine, Mark S., e John R. Pringle. "Septins". In Guidebook to the Cytoskeletal and Motor Proteins, 359–64. Oxford University PressOxford, 1999. http://dx.doi.org/10.1093/oso/9780198599579.003.00115.
Texto completo da fonteKilmartin, John V. "Yeast spindle pole body proteins". In Guidebook to the Cytoskeletal and Motor Proteins, 275–80. Oxford University PressOxford, 1999. http://dx.doi.org/10.1093/oso/9780198599579.003.0091.
Texto completo da fonteLupas, Andrei. "[30] Prediction and analysis of coiled-coil structures". In Methods in Enzymology, 513–25. Elsevier, 1996. http://dx.doi.org/10.1016/s0076-6879(96)66032-7.
Texto completo da fonteWoolfson, Derek N. "The Design of Coiled-Coil Structures and Assemblies". In Fibrous Proteins: Coiled-Coils, Collagen and Elastomers, 79–112. Elsevier, 2005. http://dx.doi.org/10.1016/s0065-3233(05)70004-8.
Texto completo da fonteHasson, Tama. "Myosin VII". In Guidebook to the Cytoskeletal and Motor Proteins, 448–50. Oxford University PressOxford, 1999. http://dx.doi.org/10.1093/oso/9780198599579.003.00135.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Structure en coiled-coil"
Greenwood, Jacob R., e Wyatt Felt. "SPIRA Coils: Soft Self-Sensing Pneumatic Integrated Retractable Actuator Coils". In ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/detc2023-109473.
Texto completo da fonteUeno, H., T. Yasunaga, C. Shingyoji, T. Yamaguchi e K. Hirose. "Dynein Pulls Microtubules Without Rotating Its Stalk". In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206430.
Texto completo da fonteBeljkas, Milan, Jelena Rebić, Milica Radan, Teodora Đikić, Slavica Oljačić e Katarina Nikolic. "3D-Quantitative Structure-Activity Relationship and design of novel Rho-associated protein kinases-1 (ROCK1) inhibitors". In 2nd International Conference on Chemo and Bioinformatics. Institute for Information Technologies, University of Kragujevac, 2023. http://dx.doi.org/10.46793/iccbi23.584b.
Texto completo da fonteBuehler, Markus J., e Zhao Qin. "Structure Prediction and Nanomechanical Properties of Human Vimentin Intermediate Filament Dimers". In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-204824.
Texto completo da fonteAhmad, Syed Hamza, Saad Yousuf Khokhar, Rameez Anwar, Arif Yousuf, Aziz Ur Rehman, Abdul Asad, Muhammad Salman Saeed, Sameer Mustafa Noor e Irfan Nazir. "Successful Application of Engineered Loss Control Solution thru Drill Bits and Coil Tubing in a Naturally Fractured Limestone and High-Temperature Ultra Low-Pressure Sandstone". In PAPG/SPE Pakistan Section Annual Technical Symposium and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/217365-ms.
Texto completo da fonteIshikawa, Masa-aki, Hiroshi Oiwa, Kosuke Sakai, Yuichi Murai, Shin-ichi Toda, Kiyoshi Tamayama e Fujio Yamamoto. "Flow Structure and Pressure Loss of Two-Phase Flow in Helically Coiled Tubes". In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45376.
Texto completo da fonteZhu, Guangyu, e Hongye Zhu. "Numerical Simulation of Interfacial Phenomenon of Air-Water Adiabatic Intermittent Flow in Helically Coiled Tubes". In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60221.
Texto completo da fontePassos, R., e C. German. "Lessons Learned from Hydrate Plug Dissociation During an Acid Stimulation in an Ultra-Deepwater, High GOR, Pre-Salt Well in Brazil". In Offshore Technology Conference Brasil. OTC, 2023. http://dx.doi.org/10.4043/32830-ms.
Texto completo da fonte