Siga este link para ver outros tipos de publicações sobre o tema: Structural performance.

Artigos de revistas sobre o tema "Structural performance"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Structural performance".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Purushotthama, P., e Dr Jagadish G. Kori. "A Study on Performance of Outrigger Structural Systems during Lateral Loads on High Rise Structures". Bonfring International Journal of Man Machine Interface 4, Special Issue (30 de julho de 2016): 07–13. http://dx.doi.org/10.9756/bijmmi.8148.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Goulet, James-A., Prakash Kripakaran e Ian F. C. Smith. "Multimodel Structural Performance Monitoring". Journal of Structural Engineering 136, n.º 10 (outubro de 2010): 1309–18. http://dx.doi.org/10.1061/(asce)st.1943-541x.0000232.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Hopkins, Brandon J., Jeffrey W. Long, Debra R. Rolison e Joseph F. Parker. "High-Performance Structural Batteries". Joule 4, n.º 11 (novembro de 2020): 2240–43. http://dx.doi.org/10.1016/j.joule.2020.07.027.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Sanders, Robert E. "High Performance Structural Materials". JOM 38, n.º 12 (dezembro de 1986): 12. http://dx.doi.org/10.1007/bf03257586.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Joo, Sanghoon. "Structural Performance of Precast Concrete Arch with Reinforced Joint". Journal of the Korean Society of Civil Engineers 34, n.º 1 (2014): 29. http://dx.doi.org/10.12652/ksce.2014.34.1.0029.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Kim. "Structural Performance of Pre-tensioned Half-depth Precast Panels". Journal of the Korean Society of Civil Engineers 34, n.º 6 (2014): 1707. http://dx.doi.org/10.12652/ksce.2014.34.6.1707.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Oh, Min Uk, In Rak Choi, Gi Beom Kim, Suk Jae Jung e Jae Hwan Lee. "Structural Performance Tests for 2HC Composite Structural System". Journal of Korean Society of Steel Construction 34, n.º 6 (27 de dezembro de 2022): 309–18. http://dx.doi.org/10.7781/kjoss.2022.34.6.309.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Kim. "Experimental Study on Flexural Structural Performance of Sinusoidal Corrugated Girder". Journal of Korean Society of Steel Construction 27, n.º 6 (2015): 503. http://dx.doi.org/10.7781/kjoss.2015.27.6.503.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Latif, Hanif Abdul, Dwiwiyati Astogini e Sumarsono Sumarsono. "VARIABEL ANTESEDEN KEPUASAN DAN PENGARUHNYA TERHADAP LOYALITAS KONSUMEN". Performance 23, n.º 2 (10 de agosto de 2017): 28. http://dx.doi.org/10.20884/1.performance.2016.23.2.276.

Texto completo da fonte
Resumo:
The purpose this study to identify and analyze the effect antecedent variable of satisfaction that is web design, web navigation, costumized preview, website quality, service quality, and perceived value to consumer loyalty of Lazada.co.id. The sample in this study there were 155 respondents who are consumers of Lazada.co.id in Jakarta region. Convenience sampling method used in the determination of the sample. Data was analyzed using Equational Structural Modeling (SEM). These results indicate web design has no effect on web quality, web navigation has positive effect on web quality, customized preview has no effect on web quality, web quality has no effect on perceived value, service quality has positive effect on perceived value, perceived value has positive effect on satisfaction,satisfaction has positive effect on consumer loyalty.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Smith, Ian F. C. "Increasing Knowledge of Structural Performance". Structural Engineering International 11, n.º 3 (agosto de 2001): 191–95. http://dx.doi.org/10.2749/101686601780346931.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Kermani, A. "Performance of structural insulated panels". Proceedings of the Institution of Civil Engineers - Structures and Buildings 159, n.º 1 (fevereiro de 2006): 13–19. http://dx.doi.org/10.1680/stbu.2006.159.1.13.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Zhao, Jack Q., e Lyne Daigle. "Structural performance of sliplined watermain". Canadian Journal of Civil Engineering 28, n.º 6 (1 de dezembro de 2001): 969–78. http://dx.doi.org/10.1139/l01-068.

Texto completo da fonte
Resumo:
Rehabilitation of a watermain by grouted sliplining is usually carried out when the existing pipe is only partially deteriorated. Although designs that neglect the structural contributions from the existing pipe and the grout are generally conservative, the performance of the rehabilitated pipe needs to be better understood for effective design and management of buried water pipes. Presented in this paper is a practical method for the determination of load sharing and circumferential stresses in a sliplined pressure pipe. The laboratory tests show that the load carrying capacity of a cast iron pipe increases substantially after it is sliplined and grouted. Results also indicate that the eccentricity between the host pipe and the inserted pipe and the direction of eccentricity have an impact on the rupture load of the sliplined pipe. The effects of the host pipe wall thickness and the grout strength are also discussed. Although the method is based on a pressurized watermain, it can be used to assess the load carrying capacity of a non-pressurized pipe such as a sewer pipe. The use of this method is demonstrated through an example.Key words: performance, sliplining, watermain, circumferential stress, load sharing, grout, service life.
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

SMITH, Ian F. C. "Enabling Performance Based Structural Engineering". IABSE Congress Report 16, n.º 5 (1 de janeiro de 2000): 1618–25. http://dx.doi.org/10.2749/222137900796314383.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Tu, Vinh, Leif E. Asp, Natasha Shirshova, Fredrik Larsson, Kenneth Runesson e Ralf Jänicke. "Performance of bicontinuous structural electrolytes". Multifunctional Materials 3, n.º 2 (11 de junho de 2020): 025001. http://dx.doi.org/10.1088/2399-7532/ab8d9b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Cardno, Catherine A. "‘Sensing Skin’ Monitors Structural Performance". Civil Engineering Magazine Archive 87, n.º 3 (março de 2017): 40–41. http://dx.doi.org/10.1061/ciegag.0001177.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Johann, Matthew A., Leonard D. Albano, Robert W. Fitzgerald e Brian J. Meacham. "Performance-Based Structural Fire Safety". Journal of Performance of Constructed Facilities 20, n.º 1 (fevereiro de 2006): 45–53. http://dx.doi.org/10.1061/(asce)0887-3828(2006)20:1(45).

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Reece, Richard, Constantina Lekakou e Paul A. Smith. "A High-Performance Structural Supercapacitor". ACS Applied Materials & Interfaces 12, n.º 23 (14 de maio de 2020): 25683–92. http://dx.doi.org/10.1021/acsami.9b23427.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Sugiarto, Meilani. "ANALISIS PERCEIVED ENJOYMENT SEBAGAI VARIABEL ANTISEDEN TECHNOLOGY ACCEPTANCE MODEL". Performance 24, n.º 1 (2 de outubro de 2017): 58. http://dx.doi.org/10.20884/1.performance.2017.24.1.315.

Texto completo da fonte
Resumo:
Young people was active users of the information technology, especially internet. Even some of them tend to make the internet as a medium of the main support daily activities. These study indicate that internet use among young people, especially college student tend to have a model of its own behavior, making it attractive for further investigation. These study focus on the influence of perceived enjoyment as variables anticedent in the Technology Acceptance Model (TAM). The respondents of these study were college student as internet users in Yogyakarta, the province is considering a student city. These study conducted on 130 respondents. According to the structural analysis with SEM method, shows that perceive enjoyment has a role as anticedent variable on TAM, because those variable has significant effects on variables in technology acceptance model.
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Zhou, Hai Bin. "Structural Performance of Chinese Larch Plywood". Advanced Materials Research 535-537 (junho de 2012): 1969–72. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.1969.

Texto completo da fonte
Resumo:
China has the largest plywood production in the world. With the fast development of timber construction in China, plywood has been used as an important structural material for sheathing. It is needed to evaluate some performances for structural use, such as uniform load test. Plywood of different thickness is manufactured according to independent developed technology on a production line. The uniform load capacity was evaluated for wall sheathing. The results showed that those two types met requirements on structural performances of wall sheathings of PS2. It was suggested that the unnecessary high performance should be intentionally lowered by veneer combination of larch or other soft species.
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Chen, Linfeng, e Benjamin A. Graybeal. "Modeling Structural Performance of Ultrahigh Performance Concrete I-Girders". Journal of Bridge Engineering 17, n.º 5 (setembro de 2012): 754–64. http://dx.doi.org/10.1061/(asce)be.1943-5592.0000305.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Wang, Qiang, Jing Feng, Quan Sun, Zhengqiang Pan e Jieru Meng. "Mechanical Products Reliability Assessment Based on the Structural Performance Degradation Data". International Journal of Materials, Mechanics and Manufacturing 3, n.º 3 (2015): 166–69. http://dx.doi.org/10.7763/ijmmm.2015.v3.188.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Fergusona, W. G., C. K. Seal, M. A. Hodgson e G. C. Clifton. "Structural Steel Performance Following Severe Earthquake Loading". International Journal of Modern Physics B 25, n.º 31 (20 de dezembro de 2011): 4149–53. http://dx.doi.org/10.1142/s0217979211066465.

Texto completo da fonte
Resumo:
The second Christchurch earthquake on February 22, 2011, Magnitude 6.35, generated more intense shaking in the Central Business District than the September 4, 2010 Darfield earthquake, Magnitude 7.1. The second earthquake was closer to the CBD and at shallow depth, resulting in peak ground accelerations 3 times higher. There was significant failure of unreinforced masonry buildings and collapse of a few reinforced concrete buildings, leading to loss of life. Steel structures on the whole performed well during the earthquake and the plastic, inelastic deformation was less than expected given the strength of the recorded ground accelerations. For steel buildings designed to withstand earthquake loading, a design philosophy is to have some structural elements deform plastically, absorbing energy in the process. Typically elements of beams are designed to plastically deform while the columns remain elastic. In the earthquake some of these elements deformed plastically and the buildings were structurally undamaged. The question which then arises is; the building may be safe, but will it withstand a further severe earthquake? In other words how much further plastic work damage can be absorbed without failure of the structural element? Previous research at Auckland on modern structural steel, where the steel was prestrained various levels, to represent earthquake loading, the toughness was determined, as a function of prestrain for the naturally strain-aged steel. Further research, on the same steel, investigated life to failure for cyclic plastic straining in tension and compression loading at various plastic strain amplitudes. This work has shown that provided the plastic strain in the structural element is in the range 2 – 5% the steel will still meet the relevant NZ Standards. To determine the remaining life the plastic strain must be determ ined then the decision made; to use the building as is, replace the structural element or demolish.
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Javidan, Mohammad Mahdi, e Jinkoo Kim. "Fuzzy Sensitivity Analysis of Structural Performance". Sustainability 14, n.º 19 (22 de setembro de 2022): 11974. http://dx.doi.org/10.3390/su141911974.

Texto completo da fonte
Resumo:
Despite the versatility and widespread application of fuzzy randomness in structural and mechanical engineering, less attention has been paid to the formulation of sensitivity analysis for this uncertainty model. In this research, a brief review of the application of sensitivity analyses in structural engineering is provided, and then the concept of local sensitivity analysis is developed for the fuzzy randomness theory. Several sensitivity tests based on the classical probability theory are extended to this uncertainty model, namely, Monte Carlo simulation (MCS), tornado diagram analysis (TDA), and first-order second-moment method (FOSM). The multidisciplinary application of these methods in engineering is shown using a numerical example, a truss structure, and finally, seismic performance evaluation of a framed structure from a full-scale experimental test. The way of visualizing the results is also provided, which helps the interpretation and better understanding. The results show that the established tools can provide detailed insight into the uncertainty of fuzzy random models. The formulated fuzzy local sensitivity can show how the output uncertainty is affected by the uncertainty of input parameters and the effectiveness of each parameter on the output variability. The provided visualization technique can show variability, the fuzziness of variability, and the order of most influential parameters. Furthermore, efficient methods such as TDA and FOSM can substantially reduce the computational time compared to the MCS while providing an acceptable trade-off for accuracy.
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Sasián, José. "Some displays of lens structural performance". Applied Optics 61, n.º 3 (2 de novembro de 2021): A22. http://dx.doi.org/10.1364/ao.442880.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Sasián, José. "Some displays of lens structural performance". Applied Optics 61, n.º 3 (2 de novembro de 2021): A22. http://dx.doi.org/10.1364/ao.442880.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

MATSUO, Takashi, e Hideyuki MORI. "STRUCTURAL SILICONE PERFORMANCE UNDER MOISTURE CONDITION". AIJ Journal of Technology and Design 27, n.º 67 (20 de outubro de 2021): 1155–60. http://dx.doi.org/10.3130/aijt.27.1155.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Adnan Sulayman, Qahtan, e Mohammed Mahmood. "Post-fire performance of structural steel". Diyala Journal of Engineering Sciences 14, n.º 2 (16 de junho de 2021): 28–41. http://dx.doi.org/10.24237/djes.2021.14203.

Texto completo da fonte
Resumo:
Carbon steel is widely used in building industry. The different structural element might be exposed to high temperature during fire. The structural safety of steel buildings must be evaluated after they have suffered a fire. The assessment requires understanding the behaviour of carbon steel after heating. Therefore, this paper is aimed at studying the post-fire behaviour of carbon steel. A total of seventeen coupon specimens were tested by uniaxial tensile test. One of them was tested without heating and considered as a reference. Sixteen specimens were heated at a temperature of either 400°C or 700°C for different durations. Eight specimens were cooled in air and the others cooled in water. Heating durations were 30 min, 60 min, 90 min and 120 min. Results showed that the high-temperature has a great influence on decreasing the ultimate and yield stress and elongation for specimens cooled in the air. For specimens cooled in water, the decreased in yield and ultimate stress was minor comparing to the reference specimen. The ductility of water-cooled specimens showed a noticeable reduction comparing to specimens cooled in air. Increasing the heating time results in higher elongation for specimens heated to 400oC and lower elongation for specimens heated to 700oC, but the specimen loses strength in both cases
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Ellingwood, B. R. "Structural reliability and performance-based engineering". Proceedings of the Institution of Civil Engineers - Structures and Buildings 161, n.º 4 (agosto de 2008): 199–207. http://dx.doi.org/10.1680/stbu.2008.161.4.199.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Yang, Shiping, Bruce H. Kjartanson e Robert A. Lohnes. "Structural performance of scrap tire culverts". Canadian Journal of Civil Engineering 28, n.º 2 (1 de abril de 2001): 179–89. http://dx.doi.org/10.1139/l00-082.

Texto completo da fonte
Resumo:
Culverts constructed of whole truck tires are a cost-effective alternative for draining water from small drainage basins with areas up to several hectares. Truck tire culvert design involves both hydraulic and structural performance considerations. This paper focuses on the structural considerations. Structural performance of truck tire culverts depends on the strength and stiffness of the truck tires and on their interaction with the surrounding backfill soil. The strength and stiffness properties of truck tires were determined by parallel plate testing. Field tests were conducted to evaluate the soil-structure interaction of buried truck tire culverts under a relatively shallow backfill. Responses with well-compacted and uncompacted (dumped) glacial till backfill soil were compared. Drawing on the results of the parallel plate tests and using the buried conduit test results for calibration, the Culvert Analysis and Design (CANDE) program was used to assess the load response of a truck tire culvert for a variety of backfill soils and to develop structural performance-based design guidelines.Key words: scrap tires, culvert, parallel plate test, field testing, CANDE.
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Kermani, Abdy, e Robert Hairstans. "Racking Performance of Structural Insulated Panels". Journal of Structural Engineering 132, n.º 11 (novembro de 2006): 1806–12. http://dx.doi.org/10.1061/(asce)0733-9445(2006)132:11(1806).

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Reddy, B. B., e A. Veeraragavan. "Structural Performance of Inservice Flexible Pavements". Journal of Transportation Engineering 123, n.º 2 (março de 1997): 156–67. http://dx.doi.org/10.1061/(asce)0733-947x(1997)123:2(156).

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Krem, Mohamed, Simi T. Hoque, Sanjay R. Arwade e Sergio F. Breña. "Structural Configuration and Building Energy Performance". Journal of Architectural Engineering 19, n.º 1 (março de 2013): 29–40. http://dx.doi.org/10.1061/(asce)ae.1943-5568.0000103.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Sooriya, P., e M. A. Bushra. "Performance assessment of hexagrid structural system". IOP Conference Series: Materials Science and Engineering 989 (11 de dezembro de 2020): 012019. http://dx.doi.org/10.1088/1757-899x/989/1/012019.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Hennart, Jean-François, e Ming Zeng. "Structural determinants of joint venture performance". European Management Review 2, n.º 2 (junho de 2005): 105–15. http://dx.doi.org/10.1057/palgrave.emr.1500034.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Sues, Robert H., Yi‐Kwei Wen e Alfredo H. ‐S Ang. "Stochastic Evaluation of Seismic Structural Performance". Journal of Structural Engineering 111, n.º 6 (junho de 1985): 1204–18. http://dx.doi.org/10.1061/(asce)0733-9445(1985)111:6(1204).

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Hansmire, William H., Henry A. Russell, Robert P. Rawnsley e Eldon L. Abbott. "Field Performance of Structural Slurry Wall". Journal of Geotechnical Engineering 115, n.º 2 (fevereiro de 1989): 141–56. http://dx.doi.org/10.1061/(asce)0733-9410(1989)115:2(141).

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Graddy, Elizabeth, e Michael B. Nichol. "Structural Reforms and Licensing Board Performance". American Politics Quarterly 18, n.º 3 (julho de 1990): 376–400. http://dx.doi.org/10.1177/1532673x9001800306.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Yusof, M. Z. "Building Investigation: Material or Structural Performance". MATEC Web of Conferences 10 (2014): 02005. http://dx.doi.org/10.1051/matecconf/20141002005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Luckyram, Jeenarainsingh, e Alan E. Vardy. "Fatigue Performance of Two Structural Adhesives". Journal of Adhesion 26, n.º 4 (novembro de 1988): 273–91. http://dx.doi.org/10.1080/00218468808071291.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Weyand, P. G. "Running performance has a structural basis". Journal of Experimental Biology 208, n.º 14 (15 de julho de 2005): 2625–31. http://dx.doi.org/10.1242/jeb.01609.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Biondini, Fabio, e Dan M. Frangopol. "Long-term performance of structural systems". Structure and Infrastructure Engineering 4, n.º 2 (abril de 2008): 75. http://dx.doi.org/10.1080/15732470601155144.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Dharmasaroja, A., C. G. Armstrong, A. Murphy, T. T. Robinson, N. L. Iorga e J. R. Barron. "Structural performance envelopes in load space". Aeronautical Journal 125, n.º 1283 (17 de novembro de 2020): 127–50. http://dx.doi.org/10.1017/aer.2020.94.

Texto completo da fonte
Resumo:
ABSTRACTVisualising the loads that a structure can tolerate provides a key insight into the structural design process, especially for materials and structures that are governed by complex failure criteria. This paper proposes a general method for efficient construction of performance envelopes in load space, and demonstrates the approach with two examples. The performance envelope identifies all possible failure modes, all the redundant and non-redundant structural constraints, and the limiting failure mode in a particular direction in load space. Once the envelope has been constructed, the structural reserve factors can be calculated extremely quickly. In design such envelopes are most useful for structural analysis processes which involve a very large number of load cases, and where the cost of constructing an envelope for a given feature is relatively modest.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Bação, Pedro. "The Performance of Structural Change Tests". Quality & Quantity 40, n.º 4 (agosto de 2006): 611–28. http://dx.doi.org/10.1007/s11135-005-2073-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

BAINBRIDGE, R. J., K. HARVEY, C. J. METTEM e M. P. ANSELL. "Fatigue Performance Of Structural Timber Connections". IABSE Symposium Report 85, n.º 1 (1 de janeiro de 2001): 19–24. http://dx.doi.org/10.2749/222137801796349178.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Ferner, Helen, Rob Jury, Andrew King, Martin Wemyss e Andrew Baird. "Performance objectives for non-structural elements". Bulletin of the New Zealand Society for Earthquake Engineering 49, n.º 1 (31 de março de 2016): 79–85. http://dx.doi.org/10.5459/bnzsee.49.1.79-85.

Texto completo da fonte
Resumo:
The recent earthquakes in New Zealand have raised awareness of the seismic vulnerability of non-structural elements and the costly consequences when non-structural elements perform poorly. Impacts on business continuity due to the damage of non-structural elements has been identified as a major cost and disruption issue in recent earthquakes in New Zealand, as well as worldwide. Clearly improvements in performance of non-structural elements under earthquake loads will yield benefits to society. This paper explores the intended and expected performance objectives for non-structural elements. Possible historic differences in performance objective expectations for non-structural elements between building services engineers, fire engineers and structural engineers are discussed. Wider construction industry expectations are explored along with our experience of client and regulatory authority views. The paper discusses the application and interpretation of the New Zealand earthquake loadings Standard NZS1170.5:2004 for the design of non-structural elements including possible differences in interpretation between building services, structural and fire engineers leading to confusion around the expected performance of non-structural elements under different limit states. It is based on the experience of several of the authors as members of the Standards committee for NZS1170.5:2004. The paper concludes by discussing changes to NZS1170.5:2004 the authors have proposed as members of the NZS1170.5 Standards committee to clarify and address the identified issues. These changes clarify the classification of parts, requirements for consideration earthquake imposed deformations, parts supported on ledges, potential falling of parts, the combination of fire and earthquake loads, and the requirement for parts to be designed for both serviceability and ultimate limit states along with the effective introduction of a serviceability limit state for parts for occupational continuity.
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Horton, Trevor, Geoffrey M. Spinks e Neils A. Isles. "Structural adhesive performance in marine environments". Polymer International 28, n.º 1 (1992): 9–17. http://dx.doi.org/10.1002/pi.4990280104.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Di Carlo, Fabio, Alberto Meda e Zila Rinaldi. "Structural performance of corroded R.C. beams". Engineering Structures 274 (janeiro de 2023): 115117. http://dx.doi.org/10.1016/j.engstruct.2022.115117.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Ganzerli, S., C. P. Pantelides e L. D. Reaveley. "Performance-based design using structural optimization". Earthquake Engineering & Structural Dynamics 29, n.º 11 (2000): 1677–90. http://dx.doi.org/10.1002/1096-9845(200011)29:11<1677::aid-eqe986>3.0.co;2-n.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Mattingly, James E. "Stakeholder Salience, Structural Development, and Firm Performance: Structural and Performance Correlates of Sociopolitical Stakeholder Management Strategies". Business & Society 43, n.º 1 (março de 2004): 97–114. http://dx.doi.org/10.1177/0007650304263415.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Lee, Sang-Youl. "Evaluation of structural performance in integrated precast decks Evaluation of structural performance in integrated precast decks". Journal of the Korean Society for Advanced Composite Structures 6, n.º 3 (30 de setembro de 2015): 14–19. http://dx.doi.org/10.11004/kosacs.2015.6.3.014.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia