Literatura científica selecionada sobre o tema "Strength of materials"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Strength of materials".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Artigos de revistas sobre o assunto "Strength of materials"

1

Levy, E. "Advanced Materials—From Strength to Strength". Advanced Materials 14, n.º 15 (5 de agosto de 2002): 1019. http://dx.doi.org/10.1002/1521-4095(20020805)14:15<1019::aid-adma1019>3.0.co;2-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Zhu, Ting, e Ju Li. "Ultra-strength materials". Progress in Materials Science 55, n.º 7 (setembro de 2010): 710–57. http://dx.doi.org/10.1016/j.pmatsci.2010.04.001.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Almuammar, Majed, Allen Schulman e Fouad Salama. "Shear bond strength of six restorative materials". Journal of Clinical Pediatric Dentistry 25, n.º 3 (1 de abril de 2001): 221–25. http://dx.doi.org/10.17796/jcpd.25.3.r8g48vn51l46421m.

Texto completo da fonte
Resumo:
The purpose of this study was to determine and compare the shear bond strength of a conventional glassionomer cement, a resin modified glass-ionomer, a composite resin and three compomer restorative materials. Dentin of the occlusal surfaces from sixty extracted human permanent molars were prepared for shear bond strength testing. The specimens were randomly divided into six groups of 10 each. Dentinal surfaces were treated according to the instructions of manufacturers for each material. Each restorative material was placed inside nylon cylinders 2 mm high with an internal diameter of 3 mm, which were placed perpendicular to dentin surfaces. Shear bond strengths were determined using an Universal Testing Machine at crosshead speed of 0.5 mm/min in a compression mode. Conventional glass-ionomer, Ketac-Molar aplicap showed the lowest mean shear bond strength 3.77 ± 1.76 (X ± SD MPa) and the composite resin, Heliomolar showed the highest mean shear bond strength 16.54 ± 1.65 while the mean bond strength of Fuji II LC was 9.55 ± 1.06. The shear bond strengths of compomer restorative materials were 12.83 ± 1.42, 10.64 ± 1.42 and 11.19 ± 1.19 for Compoglass, Hytac and Dyract respectively. ANOVA revealed statistically significant differences in the mean shear bond strengths of all groups (P&lt;0.001). No statistically significant difference was found between the three compomer materials (P&gt;0.5). Ketac-Molar and composite resin showed statistically significant difference (P&lt;0.0005). The mode of fracture varied between materials. It is concluded that the compomer restorative materials show higher shear bond strength than conventional glass-ionomer and resin modified glass-ionomer, but less than composite resin. The fracture mode is not related to the shear bond strengths values.
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Osakue, Edward, e Lucky Anetor. "Estimating beam strength of metallic gear materials". FME Transactions 50, n.º 4 (2022): 587–606. http://dx.doi.org/10.5937/fme2204587o.

Texto completo da fonte
Resumo:
Expressions for the pulsating or beam strengths of many popular metallic gear materials are derived based on the tensile strength and endurance ratio. The strength values predicted are for a reliability of 99% at load cycles corresponding to that of the endurance strength of the materials. The expressions are based on the consideration of the revised Lewis gear root stress formula by treating the design parameters as random variables associated with the lognormal probability density function and application of the Gerber fatigue failure rule. Pulsating strength predictions are compared with those of AGMA estimates for through-hardened steels and other materials. The variances between model predictions and AGMA values for steel and ductile cast iron materials are reasonably low. Low variances between model and AGMA values for high-strength gray cast iron and cast bronze were also observed. However, high variances between model and AGMA values for low-strength gray cast iron and cast bronze were found. Overall, the model estimates are considered sufficiently accurate for preliminary design applications where initial sizes of gears are generated. The study showed that for many metallic gear materials, the average pulsating strength ratio is 0.36 at 99% reliability. Therefore, the suggestion by Buckingham, that the fatigue strength of a gear tooth is approximately one-third (0.333) of the tensile strength of the material is justified.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Armitage, Catherine. "Materials science shows strength". Nature 595, n.º 7865 (30 de junho de 2021): S1. http://dx.doi.org/10.1038/d41586-021-01786-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Carpinteri, Alberto, Pietro Cornetti, Nicola Pugno e Alberto Sapora. "Strength of hierarchical materials". Microsystem Technologies 15, n.º 1 (12 de junho de 2008): 27–31. http://dx.doi.org/10.1007/s00542-008-0644-x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Kanel, G. I. "Dynamic strength of materials". Fatigue & Fracture of Engineering Materials & Structures 22, n.º 11 (novembro de 1999): 1011. http://dx.doi.org/10.1046/j.1460-2695.1999.00246.x.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Tsybul’ko, A. E., e E. A. Romanenko. "Strength of isotropic materials". Russian Engineering Research 29, n.º 2 (fevereiro de 2009): 136–38. http://dx.doi.org/10.3103/s1068798x09020075.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Trejo, David, Kevin Folliard e Lianxiang Du. "Alternative Cap Materials for Evaluating the Compressive Strength of Controlled Low-Strength Materials". Journal of Materials in Civil Engineering 15, n.º 5 (outubro de 2003): 484–90. http://dx.doi.org/10.1061/(asce)0899-1561(2003)15:5(484).

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Wu, Chuan Bao, e Bo Qiao. "URSS/PVA/WP Composite Materials: Preparation and Performance". Advanced Materials Research 968 (junho de 2014): 80–83. http://dx.doi.org/10.4028/www.scientific.net/amr.968.80.

Texto completo da fonte
Resumo:
A novel kind of environmentally friendly composite materials containing upper part of rice straw segments (URSS), poly (vinyl alcohol) (PVA) and waste paper (WP) were prepared by hot-pressing at 140°C for 10 min. The tensile strength, tensile elongation and hardness of composites were measured. Results showed that the tensile strength and the strength at tensile break of the composites first increased and then decreased with increasing PVA content. Tensile strength was higher than the strength at tensile break at different PVA contents, indicating that URSS/PVA/WP composite materials had certain toughness. Otherwise, URSS/PVA/WP composite materials had higher tensile strength than URSS/PVA composites. The tensile strengths of them were respectively 9.25 MPa and 3.9 MPa when prepared at PVA content of 40%. The hardness of composites lay between 90 and 96. Negligible difference exists in every composite.
Estilos ABNT, Harvard, Vancouver, APA, etc.

Teses / dissertações sobre o assunto "Strength of materials"

1

Soutsos, Marios Nicou. "Mix design, workability heat evolution and strength development of high strength concrete". Thesis, University College London (University of London), 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308062.

Texto completo da fonte
Resumo:
A literature survey of the properties and uses of high strength concrete, defined for this study as having a strength in excess of 60 N/tnm2, has shown that of prime need is a systematic, reproducible procedure for attaining high strength concrete. The "Maximum Density Theory", i.e. the requirement that the aggregate occupies as large a relative volume as possible, has been adopted as an approach to optimisation of the mix proportions. However, this does not consider the effect that the aggregate suIface area has on the requirement of excess paste for lubrication. To investigate the combined effect of void content and surface area, mixes with lower sand proportions than that required for minimum void content were tested for slump. The optimum sand proportion is the one that produces the highest slump, for a particular cement content. This procedure has been called: "The Modified Maximum Density Theory". Having thus optimised the cement and aggregate contents, partial cement replacement by mineral admixtures, at low water-cement ratios, has been investigated in order to assess: a) their contribution to long term strengths, b) their contribution to reducing the heat evolution of concrete mixes, and c) their effect on the workability of concrete. Condensed silica fume (at replacement levels of up to 15%) produced higher compressive strengths than ordinary Portland cement. Ground granulated blast furnace slag (at replacement levels of up to 30%) can be used without decreasing the 28-day strength. Replacement by 20% pulverised fuel ash resulted in a 15% decrease in the 28-day strength and equal strength to ordinary Portland cement concrete at ages beyond 56-days. Temperature measurements during hydration, under adiabatic conditions, have however shown that these replacement levels do not lower the temperature rise at a water-binder ratio of 0.26. The higher levels required for significant temperature reduction will also cause a significant reduction in the strength. To offset this ground granulated blast furnace slag (58%) and pulverised fuel ash (36%) in combination with 10% condensed silica fume 4 were used. These combinations reduced the temperature rise by more than 10°C while the reduction in the 28-day compressive strength was less than 15%. Partial cement replacement by pulverised fuel ash and ground granulated blast furnace slag improved the workability and therefore allowed a reduction in the superplasticiser dosage required for a given slump. The use of condensed silica fume reduces the workability at low superplasticiser dosages, but it has a water-reducing effect above a certain superplasticiser dosage. Results from these studies have been used to formulate guidelines for the proportioning of materials for producing high strength concrete.
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Wang, Congwei. "On the strength of defective graphene materials". Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/9065.

Texto completo da fonte
Resumo:
Graphene is the first 2D material consisting of carbon atoms densely packed into planar structures. Graphene oxide (GO) is the intermediate derivative of chemically-produced graphene, which retains 2D basal plane structures but is also decorated with functional groups along the basal plane and edges. This functionality allows self-assembly of planar sheets into a paper-like material. However, formations of both intrinsic defects within the sheet structures as well as larger scale extrinsic defects in the paper are expected to significantly degrade mechanical performance. Strength provides the most direct evidence of defect related mechanical behaviour and is therefore targeted for understanding defect effects in GO paper. Such evaluations are crucial both from a technological perspective of realizing designed functions and from a fundamental interest in understanding structure-mechanics in 2D nanomaterials. A complete strategy of performing mechanical testing at different length scales is thus reported to provide a comprehensive description of GO strength. Both conventional larger scale mechanical testing as well as novel smaller length scale evaluations, using in situ atomic force microscopy (AFM) combined with scanning electron microscopy (SEM) and optical microscopy as well as structural probing using synchrotron FT-IR microspectroscopy, were applied to GO materials. Results showed that large structural defects determined mechanical properties of GO papers due to stress concentration effects whereas smaller scale intrinsic effects were defined by interfacial defects and stress concentrations within sheets. Synchrotron FT-IR microspectroscopy provided molecular deformation mechanisms in GO paper, which highlighted the interaction between in-plane C=C and cross-linking C=O bonds. A comprehensive description of macroscopic GO paper using evaluations of strength at the range of length scales studied was attempted, with a good correlation between predictions and experimental observations. This thesis therefore provides a hierarchical understanding of the defects impact on the strength of graphene-based materials from the macroscale to the nanoscale.
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Bi, Wu. "Racking Strength of Paperboard Based Sheathing Materials". Miami University / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=miami1091059928.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Stone, Robert Michael 1957. "Strength and stiffness of cellular foamed materials". Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/289577.

Texto completo da fonte
Resumo:
The use of cellular foams as a core material in light-weight optical and structural systems is of considerable interest. Research and development of these systems, however, have been hampered by the lack of material property data and uncertainty in the use of various suggested material characterizations and the associated constants of proportionality. ASTM standards were researched and, for the most part, found inadequate for testing cellular foam materials. The compression, tension and shear test methods developed are presented, as well as the results from physical tests on closed-cell SXATM foam specimens. Based on the test results, material characterizations are presented. Additionally, a parametric study was performed to investigate the behavior of open and closed-cell foams. Twenty-one (21) finite element models were built and seventy (70) analyses were performed to study the effects of cell geometry. Based on the FEA results, material characterizations are presented for the cubic array and the tetrakaidecahedron geometry. The FEA results are compared with the characterizations proposed by Gibson and Ashby and the test results. The validity of the scaling laws are confirmed; however, the proposed constants of proportionality overestimate the modulii a minimum of 50%. New constants are presented for both open-cell and closed-cell foams, as well as additional insights into the effects of cell shape on Poisson's ratio.
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Violette, Melanie Glenn. "Time-dependent compressive strength of unidirectional viscoelastic composite materials /". Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Wen, Edward A. "Compressive strength prediction for composite unmanned aerial vehicles". Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=959.

Texto completo da fonte
Resumo:
Thesis (M.S.)--West Virginia University, 1999.
Title from document title page. Document formatted into pages; contains ix, 117 p. : ill. (some col.) Includes abstract. Includes bibliographical references (p. 83-84).
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Yeung, Conson. "Fracture statistics of brittle materials /". View the Table of Contents & Abstract, 2005. http://sunzi.lib.hku.hk/hkuto/record/B31490323.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

楊光俊 e Conson Yeung. "Fracture statistics of brittle materials". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B45015211.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Altzar, Oskar. "Surface Characteristics and Their Impact on Press Joint Strength". Thesis, KTH, Mekanisk metallografi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205919.

Texto completo da fonte
Resumo:
Press fitting is a commonly used method in the assembly of shafts and gearwheels in gearboxes andare using the friction created between them to hold them together. To increase productivity Scania CVAB in Södertälje, Sweden, are going to replace the current hard machining method for layshafts. Whiletesting the new methods in rig it occurred that the gearwheel slipped in tangential direction towardsthe layshaft at a lower torque then with the current method even through all requirements on thelayshafts surface was meet. The purpose and aim with this study is to investigate differences betweenthe methods and to find new requirements for the layshaft. The torque of slip, (Ms) established in atorque test rig and analysis of surface roughness, hardness and microstructure conducted of both thelayshafts and gearwheels. The characteristics of the layshaft surface was also analysed and comparedbetween the different hard machining methods. The study concludes that no correlation between thesurface parameters and the Ms occurred and no major differences in the material between themethods. The study also concluded that the Ms between the layshaft and gearwheel is lower if thelayshaft surface is harder and smoother than the gearwheel surface.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Case, Scott Wayne. "Micromechanics of strength-related phenomena in composite materials". Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-09122009-040447/.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Livros sobre o assunto "Strength of materials"

1

Alexander, J. M. Strength of materials. Chichester: Ellis Horwood, 1991.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Bhaskar, K., e T. K. Varadan. Strength of Materials. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-06377-0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Singh, D. K. Strength of Materials. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59667-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Kozachenko, A. B. Strength of materials. Moscow: Mir Publishers, 1988.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Mendes, Gustavo, e Bruno Lago. Strength of materials. New York: Nova Science Publishers, 2009.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Gustavo, Mendes, e Lago Bruno, eds. Strength of materials. Hauppauge, NY, USA: Nova Science Publishers, 2009.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Alexander, J. M. Strength of materials. New York: Prentice-Hall, 1990.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

1907-, Singer Ferdinand Leon, ed. Strength of materials. 4a ed. New York: Harper & Row, 1987.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Andrew, Pytel, ed. Strength of materials. 4a ed. New York: Harper & Row, 1987.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Mott, Robert L. Applied strength of materials. 2a ed. Englewood Cliffs, N.J: Prentice Hall, 1990.

Encontre o texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Capítulos de livros sobre o assunto "Strength of materials"

1

Rumpel, G., e H. D. Sondershausen. "Strength of Materials". In Dubbel Handbook of Mechanical Engineering, B1—B76. London: Springer London, 1994. http://dx.doi.org/10.1007/978-1-4471-3566-1_2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Lucas, George L., Francis W. Cooke e Elizabeth A. Friis. "Strength of Materials". In A Primer of Biomechanics, 36–52. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4419-8487-6_3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Chaskalovic, Joël. "Strength of Materials". In Mathematical and Numerical Methods for Partial Differential Equations, 251–311. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03563-5_6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Nichols, Daniel H. "Strength of Materials". In Physics for Technology, 123–36. Second edition. | Boca Raton : CRC Press, Taylor & Francis: CRC Press, 2018. http://dx.doi.org/10.1201/9781351207270-7.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Bozzuto, Carl. "Strength of Materials". In Boiler Operator's Handbook, 251–56. 3a ed. New York: River Publishers, 2021. http://dx.doi.org/10.1201/9781003207368-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

LeVeau, Barney F. "Strength of Materials". In Biomechanics of Human Motion, 35–53. New York: Routledge, 2024. http://dx.doi.org/10.4324/9781003522775-2.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Singh, Dinesh Kumar. "Mechanical Testing of Materials". In Strength of Materials, 857–66. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59667-5_18.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Singh, Dinesh Kumar. "Simple Stresses and Strains". In Strength of Materials, 1–52. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59667-5_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Singh, D. K. "Theory of Elastic Failure". In Strength of Materials, 433–58. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59667-5_10.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Singh, D. K. "Buckling of Columns". In Strength of Materials, 459–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59667-5_11.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Trabalhos de conferências sobre o assunto "Strength of materials"

1

"Confined Concrete with High-Strength Materials". In SP-176: High-Strength Concrete in Seismic Regions. American Concrete Institute, 1998. http://dx.doi.org/10.14359/5896.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

"Shear Strength of Beam-Column Joints with High-Strength Materials". In SP-176: High-Strength Concrete in Seismic Regions. American Concrete Institute, 1998. http://dx.doi.org/10.14359/5906.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Pham, Minh-Son. "High-strength and programmable materials". In Emerging Imaging and Sensing Technologies for Security and Defence V; Advanced Manufacturing Technologies for Micro- and Nanosystems in Security and Defence III, editado por Maria Farsari, John G. Rarity, Francois Kajzar, Attila Szep, Richard C. Hollins, Gerald S. Buller, Robert A. Lamb et al. SPIE, 2020. http://dx.doi.org/10.1117/12.2574065.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

"Low-Strength Concrete and Controlled Low-Strength Material (CLSM) Produced With Class F Fly Ash". In SP-150: Controlled Low-Strength Materials. American Concrete Institute, 1994. http://dx.doi.org/10.14359/4071.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

"Strength Development Characteristics of High-Strength Concrete Incorporating Supplementary Cementing Materials". In SP-121: High-Strength Concrete: Second International Symposium. American Concrete Institute, 1990. http://dx.doi.org/10.14359/2564.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

"Soil-Cement Slurry Pipe Embedment". In SP-150: Controlled Low-Strength Materials. American Concrete Institute, 1994. http://dx.doi.org/10.14359/4610.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

"Flowable Backfill for Pipeline Bedding at the Denver International Airport". In SP-150: Controlled Low-Strength Materials. American Concrete Institute, 1994. http://dx.doi.org/10.14359/4609.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

"Durability Factors Affecting CLSM". In SP-150: Controlled Low-Strength Materials. American Concrete Institute, 1994. http://dx.doi.org/10.14359/4386.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

"Freezing and Thawing Durability and Early Set and Strength Development of CLSM". In SP-150: Controlled Low-Strength Materials. American Concrete Institute, 1994. http://dx.doi.org/10.14359/4077.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

"Optimization of Flowable Fill Mix Proportions". In SP-150: Controlled Low-Strength Materials. American Concrete Institute, 1994. http://dx.doi.org/10.14359/4326.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Relatórios de organizações sobre o assunto "Strength of materials"

1

Thompson, A. W., I. M. Bernstein e A. Voelkel. Fundamentals of Interfacial Strength in Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1987. http://dx.doi.org/10.21236/ada198626.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Vasudevan, Vijay K., e Jainagesh A. Sekhar. Lightweight, High-Strength, Age-Hardenable Nanoscale Materials. Fort Belvoir, VA: Defense Technical Information Center, março de 2004. http://dx.doi.org/10.21236/ada422041.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Aksay, I. A., G. C. Stangle, D. M. Dabbs e M. Sarikaya. Microdesigning of Lightweight/High Strength Ceramic Materials. Fort Belvoir, VA: Defense Technical Information Center, julho de 1989. http://dx.doi.org/10.21236/ada238935.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Thompson, A. W., e I. M. Bernstein. Fundamentals of Interfacial Strength in Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, maio de 1990. http://dx.doi.org/10.21236/ada226701.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

فائق صديق العبيدي, خالد. Strength of Materials in Quran And Sunna. Academic Journal of Scientific Miracles, novembro de 2015. http://dx.doi.org/10.19138/ejaz.37.4.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Green, Brian H. Development of Soil-Based Controlled Low-Strength Materials. Fort Belvoir, VA: Defense Technical Information Center, outubro de 1999. http://dx.doi.org/10.21236/ada374305.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Lynk, John. PR-610-163756-WEB Material Strength Verification. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), abril de 2019. http://dx.doi.org/10.55274/r0011573.

Texto completo da fonte
Resumo:
DATE: Tuesday, April 30, 2019 TIME: 11:00 a.m. ET CLICK THE DOWNLOAD/BUY BUTTON TO ACCESS THE WEBINAR REGISTRATION LINK Join the PRCI Integrity and Inspection technical committee for a pipeline operator driven discussion regarding PRCI research related to non-destructive technologies for the purpose of pipe material verification and how operators have applied this research in the field. This webinar will include; research project overview, operator case studies and analysis of current technology gaps. Panelists: Mark Piazza, Manager Pipeline Compliance and R and D, Colonial Pipeline Company Mike Kern, Director of Gas Transmission Engineering, National Grid Oliver Burkinshaw, Senior Materials Engineer, ROSEN Simon Bellemare, Founder and CEO of Massachusetts Materials Technologies John Lynk, Program Manager, Integrity and Inspection and Subsea Technical Committees, PRCI Expected Benefits/Learning Outcomes: - In-ditch non-destructive evaluation for material yield strength that has been utilized on in-service lines to confirm incomplete records of pipe grades and/or to evaluate acquired assets - How the data has been utilized to collect opportunistic data as part of external corrosion direct assessments to provide a basis for maximum allowable operating pressure, as well as prioritizing and setting criteria for further inspection and potential capital projects. - The ability to differentiate specific manufacturing processes, such as low frequency and high frequency electro-resistance welded longitudinal seams, have been successfully applied on a number of pipeline integrity projects - Enhancement of inline inspection technologies combined with verification digs have demonstrated the potential to apply pipe joint specific strength data in fitness-for-service, as opposed to lower minimum values set by pipe grade or by nominal conservative assumptions. Who should attend: - Pipeline integrity engineers, specialists and management - Pipe materials specialists Recommended pre-reading: PR-610-163756-R01 Hardness Stength and Ductility (HSD) Testing of Line Pipes Initial Validation Testing Phase I PR-335-173816-MV Validation of insitu Methods for Material Property Determination CLICK THE DOWNLOAD/BUY BUTTON TO ACCESS THE WEBINAR REGISTRATION LINK Not able to attend? Register anyway to automatically receive a link to the webinar recording to view on-demand at your convenience.
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Pantsyrnyi, V., A. Shikov e A. Nikulin. Process optimization for advanced high conductivity-high strength materials. Office of Scientific and Technical Information (OSTI), setembro de 1998. http://dx.doi.org/10.2172/334204.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Ucak-Astarlioglu, Mine, Jedadiah Burroughs, Charles Weiss, Kyle Klaus, Stephen Murrell, Samuel Craig, Jameson Shannon, Robert Moser, Kevin Wyss e James Tour. Graphene in cementitious materials. Engineer Research and Development Center (U.S.), dezembro de 2023. http://dx.doi.org/10.21079/11681/48033.

Texto completo da fonte
Resumo:
This project aims to determine the influence of laboratory-generated graphene (LGG) and commercial-grade graphene (CGG) on the chemical structure and compressive strength of graphene-cement mixtures. Determining the graphene-cement structure/processing/property relationships provides the most useful information for attaining the highest compressive strength. Graphene dose and particle size, speed of mixing, and dispersant agent were found to have important roles in graphene dispersion by affecting the adhesion forces between calcium silicate hydrate (CSH) gels and graphene surfaces that result in the enhanced strength of cement-graphene mixtures. X-ray diffraction (XRD), Raman, and scanning electron microscope (SEM) analyses were used to determine chemical microstructure, and compression testing for mechanical properties characterization, respectively. Based on observed results both LGG and CGG graphene cement mixtures showed an increase in the compressive strength over 7-, 14-, and 28-day age curing periods. Preliminary dispersion studies were performed to determine the most effective surfactant for graphene dispersion. Future studies will continue to research graphene—cement mortar and graphene—concrete composites using the most feasible graphene materials. These studies will prove invaluable for military programs, warfighter support, climate change, and civil works.
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Groeneveld, Andrew, e C. Crane. Advanced cementitious materials for blast protection. Engineer Research and Development Center (U.S.), abril de 2023. http://dx.doi.org/10.21079/11681/46893.

Texto completo da fonte
Resumo:
Advanced cementitious materials, commonly referred to as ultra-high performance concretes (UHPCs), are developing rapidly and show promise for civil infrastructure and protective construction applications. Structures exposed to blasts experience strain rates on the order of 102 s-1 or more. While a great deal of research has been published on the durability and the static properties of UHPC, there is less information on its dynamic properties. The purpose of this report is to (1) compile existing dynamic property data—including compressive strength, tensile strength, elastic modulus, and energy absorption—for six proprietary and research UHPCs and (2) implement a single-degree-of-freedom (SDOF) model for axisymmetric UHPC panels under blast loading as a means of comparing the UHPCs. Although simplified, the model allows identification of key material properties and promising materials for physical testing. Model results indicate that tensile strength has the greatest effect on panel deflection, with unit weight and elastic modulus having a moderate effect. CEMTECmultiscale® deflected least in the simulation. Lafarge Ductal®, a commonly available UHPC in North America, performed in the middle of the five UHPCs considered.
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia