Siga este link para ver outros tipos de publicações sobre o tema: Strand displacement amplification.

Artigos de revistas sobre o tema "Strand displacement amplification"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Strand displacement amplification".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Walker, G. T. "Empirical aspects of strand displacement amplification." Genome Research 3, n.º 1 (1 de agosto de 1993): 1–6. http://dx.doi.org/10.1101/gr.3.1.1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Seckinger, D. "Strand displacement amplification and fluorescence polarization". Clinical Chemistry 42, n.º 10 (1 de outubro de 1996): 1720. http://dx.doi.org/10.1093/clinchem/42.10.1720.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Walker, G. Terrance, Melinda S. Fraiser, James L. Schram, Michael C. Little, James G. Nadeau e Douglas P. Malinowski. "Strand displacement amplification—an isothermal,in vitroDNA amplification technique". Nucleic Acids Research 20, n.º 7 (1992): 1691–96. http://dx.doi.org/10.1093/nar/20.7.1691.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Mullor Ruiz, Ismael, Jean-Michel Arbona, Amitkumar Lad, Oscar Mendoza, Jean-Pierre Aimé e Juan Elezgaray. "Connecting localized DNA strand displacement reactions". Nanoscale 7, n.º 30 (2015): 12970–78. http://dx.doi.org/10.1039/c5nr02434j.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Shi, Chao, Qi Liu, Cuiping Ma e Wenwan Zhong. "Exponential Strand-Displacement Amplification for Detection of MicroRNAs". Analytical Chemistry 86, n.º 1 (18 de dezembro de 2013): 336–39. http://dx.doi.org/10.1021/ac4038043.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Spargo, C. A., M. S. Fraiser, M. Van Cleve, D. J. Wright, C. M. Nycz, P. A. Spears e G. T. Walker. "Detection ofM. tuberculosisDNA using Thermophilic Strand Displacement Amplification". Molecular and Cellular Probes 10, n.º 4 (agosto de 1996): 247–56. http://dx.doi.org/10.1006/mcpr.1996.0034.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Joneja, Aric, e Xiaohua Huang. "Linear nicking endonuclease-mediated strand-displacement DNA amplification". Analytical Biochemistry 414, n.º 1 (julho de 2011): 58–69. http://dx.doi.org/10.1016/j.ab.2011.02.025.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Hellyer, Tobin J., e James G. Nadeau. "Strand displacement amplification: a versatile tool for molecular diagnostics". Expert Review of Molecular Diagnostics 4, n.º 2 (março de 2004): 251–61. http://dx.doi.org/10.1586/14737159.4.2.251.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Li, Yubin, Sheng Liu, Zike Zhao, Yuner Zheng e Zirui Wang. "Binding induced strand displacement amplification for homogeneous protein assay". Talanta 164 (março de 2017): 196–200. http://dx.doi.org/10.1016/j.talanta.2016.11.047.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Lee, Chang Yeol, Hansol Kim, Hyo Yong Kim, Ki Soo Park e Hyun Gyu Park. "Fluorescent S1 nuclease assay utilizing exponential strand displacement amplification". Analyst 144, n.º 10 (2019): 3364–68. http://dx.doi.org/10.1039/c9an00300b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Detter, John C., Jamie M. Jett, Susan M. Lucas, Eileen Dalin, Andre R. Arellano, Mei Wang, John R. Nelson et al. "Isothermal Strand-Displacement Amplification Applications for High-Throughput Genomics". Genomics 80, n.º 6 (dezembro de 2002): 691–98. http://dx.doi.org/10.1006/geno.2002.7020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Zhou, Yunlei, Bingchen Li, Minghui Wang, Jun Wang, Huanshun Yin e Shiyun Ai. "Fluorometric determination of microRNA based on strand displacement amplification and rolling circle amplification". Microchimica Acta 184, n.º 11 (30 de agosto de 2017): 4359–65. http://dx.doi.org/10.1007/s00604-017-2450-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Wang, Hongzhi, Yu Wang, Su Liu, Jinghua Yu, Wei Xu, Yuna Guo e Jiadong Huang. "Target–aptamer binding triggered quadratic recycling amplification for highly specific and ultrasensitive detection of antibiotics at the attomole level". Chemical Communications 51, n.º 39 (2015): 8377–80. http://dx.doi.org/10.1039/c5cc01473e.

Texto completo da fonte
Resumo:
A novel electrochemical aptasensor for ultrasensitive detection of antibiotics by combining polymerase-assisted target recycling amplification with strand displacement amplification with the help of polymerase and nicking endonuclease has been reported.
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

He, Jing-Lin, Zai-Sheng Wu, Hui Zhou, Hong-Qi Wang, Jian-Hui Jiang, Guo-Li Shen e Ru-Qin Yu. "Fluorescence Aptameric Sensor for Strand Displacement Amplification Detection of Cocaine". Analytical Chemistry 82, n.º 4 (15 de fevereiro de 2010): 1358–64. http://dx.doi.org/10.1021/ac902416u.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Ehses, Sylvia, Jörg Ackermann e John S. McCaskill. "Optimization and design of oligonucleotide setup for strand displacement amplification". Journal of Biochemical and Biophysical Methods 63, n.º 3 (junho de 2005): 170–86. http://dx.doi.org/10.1016/j.jbbm.2005.04.005.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Spears, Patricia A., C. Preston Linn, Dan L. Woodard e G. Terrance Walker. "Simultaneous Strand Displacement Amplification and Fluorescence Polarization Detection ofChlamydia trachomatisDNA". Analytical Biochemistry 247, n.º 1 (abril de 1997): 130–37. http://dx.doi.org/10.1006/abio.1997.2043.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Lee, Hyobeen, Dong-Min Kim e Dong-Eun Kim. "Label-free fluorometric detection of influenza viral RNA by strand displacement coupled with rolling circle amplification". Analyst 145, n.º 24 (2020): 8002–7. http://dx.doi.org/10.1039/d0an01326a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Zou, Bingjie, Qinxin Song, Jianping Wang, Yunlong Liu e Guohua Zhou. "Invasive reaction assisted strand-displacement signal amplification for sensitive DNA detection". Chem. Commun. 50, n.º 89 (2014): 13722–24. http://dx.doi.org/10.1039/c4cc06079b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Zhang, Rufeng, Jie Zhang, Xiaonan Qu, Shasha Li, Yihan Zhao, Su Liu, Yu Wang, Jiadong Huang e Jinghua Yu. "Efficient strand displacement amplification via stepwise movement of a bipedal DNA walker on an electrode surface for ultrasensitive detection of antibiotics". Analyst 145, n.º 8 (2020): 2975–81. http://dx.doi.org/10.1039/d0an00139b.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Raikar, S. V., C. Bryant, R. Braun, A. J. Conner e M. C. Christey. "Whole genome amplification from plant cell colonies of somatic hybrids using strand displacement amplification". Plant Biotechnology Reports 1, n.º 3 (12 de julho de 2007): 175–77. http://dx.doi.org/10.1007/s11816-007-0026-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Miao, Peng, Yiting Jiang, Tian Zhang, Yue Huang e Yuguo Tang. "Electrochemical sensing of attomolar miRNA combining cascade strand displacement polymerization and reductant-mediated amplification". Chemical Communications 54, n.º 53 (2018): 7366–69. http://dx.doi.org/10.1039/c8cc03698e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Yan, Yurong, Bo Shen, Hong Wang, Xue Sun, Wei Cheng, Hua Zhao, Huangxian Ju e Shijia Ding. "A novel and versatile nanomachine for ultrasensitive and specific detection of microRNAs based on molecular beacon initiated strand displacement amplification coupled with catalytic hairpin assembly with DNAzyme formation". Analyst 140, n.º 16 (2015): 5469–74. http://dx.doi.org/10.1039/c5an00920k.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Dai, Wenhao, Haifeng Dong, Keke Guo e Xueji Zhang. "Near-infrared triggered strand displacement amplification for MicroRNA quantitative detection in single living cells". Chemical Science 9, n.º 7 (2018): 1753–59. http://dx.doi.org/10.1039/c7sc04243d.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Chan, Edward L., Ken Brandt, Karen Olienus, Nick Antonishyn e Greg B. Horsman. "Performance Characteristics of the Becton Dickinson ProbeTec System for Direct Detection ofChlamydia trachomatisandNeisseria gonorrhoeaein Male and Female Urine Specimens in Comparison With the Roche Cobas System". Archives of Pathology & Laboratory Medicine 124, n.º 11 (1 de novembro de 2000): 1649–52. http://dx.doi.org/10.5858/2000-124-1649-pcotbd.

Texto completo da fonte
Resumo:
AbstractObjective.—The Becton Dickinson BDProbeTec ET System is a new semiautomated system using strand displacement amplification technology that simultaneously amplifies and detects Chlamydia trachomatis and Neisseria gonorrhoeae DNA. The strand displacement amplification products are hybridized with a fluorescent detector probe and are captured by a chemiluminescent assay in a microwell format. An amplification control is also included to monitor assay inhibition. This study evaluated the performance of the BDProbTec ET system in detecting C trachomatis and N gonorrhoeae in male and female urine specimens, calculated its ability to process large volumes of specimens, and determined the inhibition rate.Materials and Methods.—Eight hundred twenty-five male and 399 female urine specimens were tested for both C trachomatis and N gonorrhoeae with the BDProbeTec ET system, and results were compared with those of the Roche Amplicor Cobas system. All urine specimens were processed on both assays on the same day they were received, according to the manufacturers' instructions. Discrepant results were resolved by in-house polymerase chain reaction assays. Internal or amplification controls were also used in each specimen assay to monitor inhibition. The throughput of the BDProbTec ET system was further tested with 150 urine specimens on an 8-hour shift for 2 days.Results.—The overall sensitivity, specificity, positive predicative value, and negative predicative value for for detection of chlamydia were 95.3%, 99.3%, 95.9%, and 99.2% for strand displacement amplification and 95.9%, 98.3%, 90.6%, and 99.3% for the Roche Amplicor system. For detection of gonorrhea, these values were 100%, 99.7%, 88.2%, and 100% and 96.7%, 98.9%, 69%, and 99.9%, respectively. The overall inhibition rates for both strand displacement amplification and Roche Amplicor were less than 3.5%. The BDProbTec ET system was able to produce 150 results each for chlamydia and gonorrhea and the internal control within the 8-hour shift.Conclusions.—The performance characteristics of the BDProbeTec ET assay are similar to those of the Roche Amplicor polymerase chain reaction for detection of chlamydia and gonorrhea in male and female urine specimens. The system was able to produce 300 results in an 8-hour shift.
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Ling, Yu, Xiao Fang Zhang, Xiao Hui Chen, Li Liu, Xiao Hu Wang, De Shou Wang, Nian Bing Li e Hong Qun Luo. "A dual-cycling biosensor for target DNA detection based on the toehold-mediated strand displacement reaction and exonuclease III assisted amplification". New Journal of Chemistry 42, n.º 6 (2018): 4714–18. http://dx.doi.org/10.1039/c7nj05191c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Hu, Pingyue, Xiu Wang, Long Wei, Rui Dai, Xin Yuan, Ke Huang e Piaopiao Chen. "Selective recognition of CdTe QDs and strand displacement signal amplification-assisted label-free and homogeneous fluorescence assay of nucleic acid and protein". Journal of Materials Chemistry B 7, n.º 31 (2019): 4778–83. http://dx.doi.org/10.1039/c9tb00753a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Zhang, Zhang, Min Mei, Juan Yao, Ting Ye, Jing Quan e Jinbo Liu. "An off/on thrombin activated energy driven molecular machine for sensitive detection of human thrombin via non-enzymatic catalyst recycling amplification". Analyst 145, n.º 21 (2020): 6868–74. http://dx.doi.org/10.1039/d0an01054e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Meng, Xiangdan, Wenhao Dai, Kai Zhang, Haifeng Dong e Xueji Zhang. "Imaging multiple microRNAs in living cells using ATP self-powered strand-displacement cascade amplification". Chemical Science 9, n.º 5 (2018): 1184–90. http://dx.doi.org/10.1039/c7sc04725h.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Wu, Wanghua, Tao Zhang, Da Han, Hongliang Fan, Guizhi Zhu, Xiong Ding, Cuichen Wu et al. "Aligner-mediated cleavage of nucleic acids and its application to isothermal exponential amplification". Chemical Science 9, n.º 11 (2018): 3050–55. http://dx.doi.org/10.1039/c7sc05141g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Lee, Chang Yeol, Hyo Yong Kim, Soeun Kim, Ki Soo Park e Hyun Gyu Park. "A simple and sensitive detection of small molecule–protein interactions based on terminal protection-mediated exponential strand displacement amplification". Analyst 143, n.º 9 (2018): 2023–28. http://dx.doi.org/10.1039/c8an00099a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Dai, Rui, Pingyue Hu, Xiu Wang, Shixin Wang, Xinmei Song, Ke Huang e Piaopiao Chen. "Visual/CVG-AFS/ICP-MS multi-mode and label-free detection of target nucleic acids based on a selective cation exchange reaction and enzyme-free strand displacement amplification". Analyst 144, n.º 14 (2019): 4407–12. http://dx.doi.org/10.1039/c9an00642g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Yu, Lili, Hui Xu, Hou Chen, Liangjiu Bai e Wenxiang Wang. "Exonuclease III assisted and label-free detection of mercury ion based on toehold strand displacement amplification strategy". Analytical Methods 8, n.º 39 (2016): 7054–60. http://dx.doi.org/10.1039/c6ay02169g.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Leonardo, Sandra, Anna Toldrà e Mònica Campàs. "Biosensors Based on Isothermal DNA Amplification for Bacterial Detection in Food Safety and Environmental Monitoring". Sensors 21, n.º 2 (16 de janeiro de 2021): 602. http://dx.doi.org/10.3390/s21020602.

Texto completo da fonte
Resumo:
The easy and rapid spread of bacterial contamination and the risk it poses to human health makes evident the need for analytical methods alternative to conventional time-consuming laboratory-based techniques for bacterial detection. To tackle this demand, biosensors based on isothermal DNA amplification methods have emerged, which avoid the need for thermal cycling, thus facilitating their integration into small and low-cost devices for in situ monitoring. This review focuses on the breakthroughs made on biosensors based on isothermal amplification methods for the detection of bacteria in the field of food safety and environmental monitoring. Optical and electrochemical biosensors based on loop mediated isothermal amplification (LAMP), rolling circle amplification (RCA), recombinase polymerase amplification (RPA), helicase dependent amplification (HDA), strand displacement amplification (SDA), and isothermal strand displacement polymerisation (ISDPR) are described, and an overview of their current advantages and limitations is provided. Although further efforts are required to harness the potential of these emerging analytical techniques, the coalescence of the different isothermal amplification techniques with the wide variety of biosensing detection strategies provides multiple possibilities for the efficient detection of bacteria far beyond the laboratory bench.
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Lee, Chang Yeol, Hyo Yong Kim, Jun Ki Ahn, Ki Soo Park e Hyun Gyu Park. "Rapid and label-free strategy for the sensitive detection of Hg2+ based on target-triggered exponential strand displacement amplification". RSC Adv. 7, n.º 74 (2017): 47143–47. http://dx.doi.org/10.1039/c7ra09226a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Wang, Lisha, Ying Han, Shuai Xiao, Sha Lv, Cong Wang, Nan Zhang, Zhengyong Wang et al. "Reverse strand-displacement amplification strategy for rapid detection of p53 gene". Talanta 187 (setembro de 2018): 365–69. http://dx.doi.org/10.1016/j.talanta.2018.05.035.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Wu, Wei, Yiping Mao, Shiming Zhao, Xuewen Lu, Xingguo Liang e Lingwen Zeng. "Strand displacement amplification for ultrasensitive detection of human pluripotent stem cells". Analytica Chimica Acta 881 (junho de 2015): 124–30. http://dx.doi.org/10.1016/j.aca.2015.04.003.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Yang, Dawei, Yuguo Tang, Zhenzhen Guo, Xifeng Chen e Peng Miao. "Proximity aptasensor for protein detection based on an enzyme-free amplification strategy". Molecular BioSystems 13, n.º 10 (2017): 1936–39. http://dx.doi.org/10.1039/c7mb00458c.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Yan, Xiaoyu, Min Tang, Jianru Yang, Wei Diao, Hongmin Ma, Wenbin Cheng, Haiying Que, Tong Wang e Yurong Yan. "A one-step fluorescent biosensing strategy for highly sensitive detection of HIV-related DNA based on strand displacement amplification and DNAzymes". RSC Advances 8, n.º 55 (2018): 31710–16. http://dx.doi.org/10.1039/c8ra06480f.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Nycz, Colleen M., Cheryl H. Dean, Perry D. Haaland, Catherine A. Spargo e G. Terrance Walker. "Quantitative Reverse Transcription Strand Displacement Amplification: Quantitation of Nucleic Acids Using an Isothermal Amplification Technique". Analytical Biochemistry 259, n.º 2 (junho de 1998): 226–34. http://dx.doi.org/10.1006/abio.1998.2641.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Wen, Zhi-Bin, Wen-Bin Liang, Ying Zhuo, Cheng-Yi Xiong, Ying-Ning Zheng, Ruo Yuan e Ya-Qin Chai. "An efficient target–intermediate recycling amplification strategy for ultrasensitive fluorescence assay of intracellular lead ions". Chemical Communications 53, n.º 54 (2017): 7525–28. http://dx.doi.org/10.1039/c7cc04104g.

Texto completo da fonte
Resumo:
An ultrasensitive fluorescence assay for intracellular Pb2+ determination was proposed through target–intermediate recycling amplification based on metal-assisted DNAzyme catalysis and strand displacement reactions.
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Song, Chunyuan, Yuzhou Sun, Jingjing Zhang, Tao Wang, Yingxin Wang, Ying Liu e Lianhui Wang. "A target-mediated fuel-initiated molecular machine for high-sensitive fluorescence assay of the ZIKV gene via strand displacement reaction-based signal recovery and cycling amplification". Analyst 145, n.º 16 (2020): 5475–81. http://dx.doi.org/10.1039/d0an00854k.

Texto completo da fonte
Resumo:
A target-mediated fuel-initiated molecular machine was proposed for the high-sensitive fluorescence assay of the ZIKV gene via strand displacement reaction-based signal recovery and cycling amplification.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Chen, Yuqi, Yanyan Song, Fan Wu, Wenting Liu, Boshi Fu, Bingkun Feng e Xiang Zhou. "A DNA logic gate based on strand displacement reaction and rolling circle amplification, responding to multiple low-abundance DNA fragment input signals, and its application in detecting miRNAs". Chemical Communications 51, n.º 32 (2015): 6980–83. http://dx.doi.org/10.1039/c5cc01389e.

Texto completo da fonte
Resumo:
A conveniently amplified DNA AND logic gate platform was designed for the highly sensitive detection of low-abundance DNA fragment inputs based on strand displacement reaction and rolling circle amplification strategy.
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Meng, Leixia, Yanmei Li, Ruiying Yang, Xiaohua Zhang, Cuicui Du e Jinhua Chen. "A sensitive photoelectrochemical assay of miRNA-155 based on a CdSe QDs//NPC-ZnO polyhedra photocurrent-direction switching system and target-triggered strand displacement amplification strategy". Chemical Communications 55, n.º 15 (2019): 2182–85. http://dx.doi.org/10.1039/c8cc09411j.

Texto completo da fonte
Resumo:
A new photoelectrochemical biosensor based on a CdSe QD//NPC-ZnO polyhedra photocurrent-direction switching system and a target-triggered strand displacement amplification strategy was developed for the detection of miRNA-155.
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Wen, Zhi-Bin, Wen-Bin Liang, Ying Zhuo, Cheng-Yi Xiong, Ying-Ning Zheng, Ruo Yuan e Ya-Qin Chai. "An ATP-fueled nucleic acid signal amplification strategy for highly sensitive microRNA detection". Chemical Communications 54, n.º 77 (2018): 10897–900. http://dx.doi.org/10.1039/c8cc05525d.

Texto completo da fonte
Resumo:
Herein, an adenosine triphosphate (ATP)-fueled nucleic acid signal amplification strategy based on toehold-mediated strand displacement (TMSD) and fluorescence resonance energy transfer (FRET) was proposed for highly sensitive detection of microRNA-21.
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Li, Zhi-Mei, Zhao-Hua Zhong, Ru-Ping Liang e Jian-Ding Qiu. "The colorimetric assay of DNA methyltransferase activity based on strand displacement amplification". Sensors and Actuators B: Chemical 238 (janeiro de 2017): 626–32. http://dx.doi.org/10.1016/j.snb.2016.07.087.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Jia, Huning, Ying Bu, Bingjie Zou, Jianping Wang, Shalen Kumar, Janet L. Pitman, Guohua Zhou e Qinxin Song. "Signal amplification of microRNAs with modified strand displacement-based cycling probe technology". Analyst 141, n.º 22 (2016): 6297–302. http://dx.doi.org/10.1039/c6an01024e.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Tian, Tian, Heng Xiao, Xiaolian Zhang, Shuang Peng, Xiaoe Zhang, Shan Guo, Shaoru Wang et al. "Simultaneously sensitive detection of multiple miRNAs based on a strand displacement amplification". Chem. Commun. 49, n.º 1 (2013): 75–77. http://dx.doi.org/10.1039/c2cc36728a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Shi, Chao, Yujie Ge, Hongxi Gu e Cuiping Ma. "Highly sensitive chemiluminescent point mutation detection by circular strand-displacement amplification reaction". Biosensors and Bioelectronics 26, n.º 12 (agosto de 2011): 4697–701. http://dx.doi.org/10.1016/j.bios.2011.05.017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Nadeau, James G., J. Bruce Pitner, C. Preston Linn, James L. Schram, Cheryl H. Dean e Colleen M. Nycz. "Real-Time, Sequence-Specific Detection of Nucleic Acids during Strand Displacement Amplification". Analytical Biochemistry 276, n.º 2 (dezembro de 1999): 177–87. http://dx.doi.org/10.1006/abio.1999.4350.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Xu, Huo, Yafeng Zhang, Shuxin Zhang, Mengze Sun, Weihong Li, Yifan Jiang e Zai-Sheng Wu. "Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification". Analytica Chimica Acta 1047 (janeiro de 2019): 172–78. http://dx.doi.org/10.1016/j.aca.2018.10.004.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia