Literatura científica selecionada sobre o tema "Strain"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Strain".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Strain"
Li, Shunqun, Xuelei Cheng, Jianbao Fu, Lin Pan e Ran Hai. "Line strain representation and shear strain representation of 3D strain states". PLOS ONE 16, n.º 11 (18 de novembro de 2021): e0259655. http://dx.doi.org/10.1371/journal.pone.0259655.
Texto completo da fonteDolzhanskyi, A. M., T. A. Ayupova, O. A. Nosko, O. P. Rybkin e O. A. Ayupov. "Transition from engineering strain to the true strain in analytical description of metals hardening". Physical Metallurgy and Heat Treatment of Metals, n.º 1 (92) (11 de maio de 2021): 66–70. http://dx.doi.org/10.30838/j.pmhtm.2413.230321.66.736.
Texto completo da fonteOuwerkerk, Janneke P., Hanne L. P. Tytgat, Janneke Elzinga, Jasper Koehorst, Pieter Van den Abbeele, Bernard Henrissat, Miguel Gueimonde et al. "Comparative Genomics and Physiology of Akkermansia muciniphila Isolates from Human Intestine Reveal Specialized Mucosal Adaptation". Microorganisms 10, n.º 8 (9 de agosto de 2022): 1605. http://dx.doi.org/10.3390/microorganisms10081605.
Texto completo da fonteSirkis, J. S., Y. L. Lo e P. L. Nielsen. "Phase-Strain Model for Polarimetric Strain Sensors Based on Fictitious Residual Strains". Journal of Intelligent Material Systems and Structures 5, n.º 4 (julho de 1994): 494–500. http://dx.doi.org/10.1177/1045389x9400500405.
Texto completo da fonteKitagawa, Masayoshi, Tetsuyuki Onoda e Kazunobu Mizutani. "Stress-strain behaviour at finite strains for various strain paths in polyethylene". Journal of Materials Science 27, n.º 1 (janeiro de 1992): 13–23. http://dx.doi.org/10.1007/bf02403638.
Texto completo da fonteMisic, Dusan, Zorica Stosic, Ferenc Kiskarolj, Vladica Adamov e Ruzica Asanin. "Investigations of multiresistance to antibiotics and chemotherapeutics and extended spectrum beta: Lactamase effect (ESBL test) in strains E.coli and salmonella originating from domestic animals". Veterinarski glasnik 60, n.º 1-2 (2006): 21–31. http://dx.doi.org/10.2298/vetgl0602021m.
Texto completo da fonteBest, T. M., J. H. McElhaney, W. E. Garrett e B. S. Myers. "Axial Strain Measurements in Skeletal Muscle at Various Strain Rates". Journal of Biomechanical Engineering 117, n.º 3 (1 de agosto de 1995): 262–65. http://dx.doi.org/10.1115/1.2794179.
Texto completo da fonteAyers, Jacob I., Anthony E. Kincaid e Jason C. Bartz. "Prion Strain Targeting Independent of Strain-Specific Neuronal Tropism". Journal of Virology 83, n.º 1 (29 de outubro de 2008): 81–87. http://dx.doi.org/10.1128/jvi.01745-08.
Texto completo da fonteGlisson, Richard R., Douglas S. Musgrave, Robert D. Graham e Thomas P. Vail. "Validity of Photoelastic Strain Measurement on Cadaveric Proximal Femora". Journal of Biomechanical Engineering 122, n.º 4 (22 de março de 2000): 423–29. http://dx.doi.org/10.1115/1.1287162.
Texto completo da fonteBressan, J. D., e J. A. Williams. "Limit strains in the sheet forming of strain and strain-rate sensitive materials". Journal of Mechanical Working Technology 11, n.º 3 (julho de 1985): 291–317. http://dx.doi.org/10.1016/0378-3804(85)90003-8.
Texto completo da fonteTeses / dissertações sobre o assunto "Strain"
Koob, Christopher E. "High temperature fiber optic strain sensing". Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-02132009-171339/.
Texto completo da fonteChen, Yuejian. "High-strain, high-strain-rate deformation of tantalum /". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1998. http://wwwlib.umi.com/cr/ucsd/fullcit?p9828890.
Texto completo da fonteGosling, T. J. "Strain relaxation via dislocation formation in strained semiconductor structures". Thesis, University of Bath, 1994. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387390.
Texto completo da fontePani´c, Nebojsa. "High strain rate-induced failure in steels at high shear strains". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0006/MQ45106.pdf.
Texto completo da fonteJulian, Michael Robert. "Material characterization of viscoelastic polymeric molding compounds". Connect to resource, 1994. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1137616726.
Texto completo da fonteAdvisors: Vernal H. Kenner and Carl H. Popelar, Dept. of Engineering Mechanics. Includes bibliographical references (leaf 106). Available online via OhioLINK's ETD Center
Smith, Byron L. "Mean strain effects on the strain life fatigue curve". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA267211.
Texto completo da fonteLarour, Patrick [Verfasser]. "Strain rate sensitivity of automotive sheet steels: influence of plastic strain, strain rate, temperature, microstructure, bake hardening and pre-strain / vorgelegt von Patrick Larour". Aachen : Shaker, 2010. http://d-nb.info/1007085649/34.
Texto completo da fonteJavornik, Ana. "Tissue velocity, strain und strain rate bei Hunden mit Mitralklappenendokardiose". Diss., [S.l.] : [s.n.], 2007. http://edoc.ub.uni-muenchen.de/archive/00007454.
Texto completo da fonteBarraclough, Thomas William. "Strain softening and strain localisation in irreversible deformation of snow". Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/16218.
Texto completo da fonteMagoda, Cletus Mathew. "High strain-rate compressive strain of welded 300W asteel joints". Thesis, Cape Peninsula University of Technology, 2011. http://hdl.handle.net/20.500.11838/1248.
Texto completo da fonteThe split Hopkinson pressure bar (SHPB) test is the most commonly used method for determining material properties at high rates of strain. The theory governing the specifics of Hopkinson bar testing has been around for decades; however, it has only been for the last decade or so that significant data processing advancements have been made. It is the intent of this thesis to offer the insight of application of SHPB to determine the compressive dynamic behaviour for welded low carbon steel (mild steel). It also focuses on the tensile behaviour for unheat-treated and heat-treated welded carbon steel. The split Hopkinson Pressure bar apparatus consists of two long slender bars that sandwich a short cylindrical specimen between them. By striking the end of a bar, a compressive stress wave is generated that immediately begins to traverse towards the specimen. Upon arrival at the specimen, the wave partially reflects back towards the impact end. The remainder of the wave transmits through the specimen and into the second bar, causing irreversible plastic deformation in the specimen. It is shown that the reflected and transmitted waves are proportional to the specimen's strain rate and stress, respectively. Specimen strain can be determined by integrating the strain rate. By monitoring the strains in the two bars and the specimen's material, stress-strain properties can be calculated. Several factors influence the accuracy of the results, including the size and type of the data logger, impedance mismatch of the bars with the specimens, the utilization of the appropriate strain gauges and the strain amplifier properties, among others. A particular area of advancement is a new technique to determine the wave's velocity in the specimen with respect to change in medium and mechanical properties, and hence increasing the range of application of SHPB. It is shown that by choosing specimen dimensions based on their impedance, the transmitted stress signal-to-noise ratio can be improved. An in depth discussion of realistic expectations of strain gages is presented, along with closed form solutions validating any claims. The thesis concludes with an analysis of experimental and predicted results. Several recommendations and conclusions are made with regard to the results obtained and areas of improvement are suggested in order to achieve accurate and more meaningful results.
Livros sobre o assunto "Strain"
L, Window A., ed. Strain gauge technology. 2a ed. London: Elsevier Applied Science, 1992.
Encontre o texto completo da fonteChuck, Hogan, ed. The strain. New York, NY: HarperLuxe, 2009.
Encontre o texto completo da fonteToro, Guillermo del. The Strain. New York: HarperCollins, 2009.
Encontre o texto completo da fonte1964-, Toro Guillermo del, Hogan Chuck, Huddleston Mike ill, Jackson Dan 1971- e Robins Clem, eds. The strain. Milwaukie, Or: Dark Horse, 2013.
Encontre o texto completo da fonteWilliams, James A., ed. Strain Engineering. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-197-0.
Texto completo da fonteFreed, Alan David. Natural strain. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Encontre o texto completo da fonteToro, Guillermo del. The strain. New York, NY: Harper, 2009.
Encontre o texto completo da fonteCopyright Paperback Collection (Library of Congress), ed. Mortal strain. New York, NY: Kensington Pub. Corp., 2002.
Encontre o texto completo da fonteToro, Guillermo del. The strain. London: Harper, 2010.
Encontre o texto completo da fonteChuck, Hogan, ed. The strain. New York: William Morrow, 2009.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Strain"
Durgam, Roshni. "Adductor Strain (Groin Strain)". In Musculoskeletal Sports and Spine Disorders, 237–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50512-1_52.
Texto completo da fonteScaffidi, Thomas. "Strain". In Weak-Coupling Theory of Topological Superconductivity, 89–104. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62867-7_5.
Texto completo da fonteKeaton, Jeffrey R. "Strain". In Selective Neck Dissection for Oral Cancer, 1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-12127-7_271-1.
Texto completo da fonteLew Yan Voon, Lok C., e Morten Willatzen. "Strain". In The k p Method, 167–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92872-0_7.
Texto completo da fonteFreed, Alan D. "Strain". In Soft Solids, 47–75. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03551-2_3.
Texto completo da fonteGooch, Jan W. "Strain". In Encyclopedic Dictionary of Polymers, 703. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11256.
Texto completo da fonteBlackburn, James A. "Strain". In Modern Instrumentation for Scientists and Engineers, 181–93. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0103-5_12.
Texto completo da fonteGonzález-Velázquez, Jorge Luis. "Strain". In Structural Integrity, 43–80. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29241-6_2.
Texto completo da fontePodio-Guidugli, Paolo. "Strain". In A Primer in Elasticity, 1–23. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-0594-3_1.
Texto completo da fontePark, R. G. "Strain". In Foundations of Structural Geology, 37–44. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-011-6576-1_6.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Strain"
Lo, Yu-Lung, Peter L. Nielsen e James S. Sirkis. "Phase-strain model for polarimetric strain sensors based on fictitious residual strains". In 1994 North American Conference on Smart Structures and Materials, editado por James S. Sirkis. SPIE, 1994. http://dx.doi.org/10.1117/12.173978.
Texto completo da fonteKlemm, H. "Reservoir Strain Changes from 4D Time-Strains". In 80th EAGE Conference and Exhibition 2018. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201800716.
Texto completo da fonteIgi, Satoshi, Joe Kondo, Nobuhisa Suzuki, Joe Zhou e Da-Ming Duan. "Strain Capacity of X100 High-Strain Linepipe for Strain-Based Design Application". In 2008 7th International Pipeline Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ipc2008-64518.
Texto completo da fontePeelamedu, Saravanan M., Yunhe Yu, Kevin E. Molyet, Ganapathy Naganathan e Rao V. Dukkipati. "Strain transfer in an induced-strain actuator". In 5th Annual International Symposium on Smart Structures and Materials, editado por Vasundara V. Varadan. SPIE, 1998. http://dx.doi.org/10.1117/12.316338.
Texto completo da fonteTang, Huang, Doug Fairchild, Michele Panico, Justin Crapps e Wentao Cheng. "Strain Capacity Prediction of Strain-Based Pipelines". In 2014 10th International Pipeline Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/ipc2014-33749.
Texto completo da fonteTkaczyk, Tomasz, Daniil Vasilikis e Aurelien Pepin. "Effect of Pre-Strain on Bending Strain Capacity of Mechanically Lined Pipe". In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18450.
Texto completo da fonteDommann, Alex, e Antonia Neels. "X-Ray Strain Measurements In Strained Silicon Devices". In STRESS MANAGEMENT FOR 3D ICS USING THROUGH SILICON VIAS: International Workshop on Stress Management for 3D ICs Using Through Silicon Vias. AIP, 2011. http://dx.doi.org/10.1063/1.3615700.
Texto completo da fonteDonica, Thomas, Jonathan Gray e Ephraim F. Zegeye. "Strain Mapping and Large Strain Measurement Using Biaxial Skin Sensors". In ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/smasis2019-5698.
Texto completo da fonteRoths, Johannes, Andre Wilfert, Peter Kratzer, Florian Jülich e Rolf Kuttler. "Strain calibration of optical FBG-based strain sensors". In (EWOFS'10) Fourth European Workshop on Optical Fibre Sensors, editado por José Luís Santos, Brian Culshaw, José Miguel López-Higuera e William N. MacPherson. SPIE, 2010. http://dx.doi.org/10.1117/12.866428.
Texto completo da fonteSuzuki, Nobuhisa, Joe Kondo, Nobuyuki Ishikawa, Mitsuru Okatsu e Junji Shimamura. "Strain Capacity of X80 High-Strain Line Pipes". In ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29505.
Texto completo da fonteRelatórios de organizações sobre o assunto "Strain"
Keating, Jessica N., Brittney Patterson, Roberta Speir, Caroline Wiswell e Luz Aceves Gonzalez. Strain Specific: Microbial Strains Involved in Gut-Brain Signaling. Journal of Young Investigators, agosto de 2017. http://dx.doi.org/10.22186/jyi.33.3.49-54.
Texto completo da fonteWang e Cheng. L52193 Guidelines on Tensile Strain Limits. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), abril de 2004. http://dx.doi.org/10.55274/r0011134.
Texto completo da fonteMohr. L52241 Strain-Based Design - Strain Concentration at Girth Welds. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), dezembro de 2006. http://dx.doi.org/10.55274/r0010386.
Texto completo da fonteWang, Yong-Yi. PR-350-174500-R02 Characterization of Pipeline Wall Loss for Strain Capacity. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), janeiro de 2019. http://dx.doi.org/10.55274/r0011552.
Texto completo da fonteWang e Cheng. L52020 Extension of Strain Design Criteria to Buried HAZ Defects. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), janeiro de 2004. http://dx.doi.org/10.55274/r0011103.
Texto completo da fonteGlazer, Itamar, Randy Gaugler, Daniel Segal, Parwinder Grewal, Yitzhak Spiegel e Senthamizh Selvan. Genetic Enhancement of Environmental Stability and Efficacy of Entomopathogenic Nematodes for Biological Control. United States Department of Agriculture, agosto de 1995. http://dx.doi.org/10.32747/1995.7695833.bard.
Texto completo da fonteVeyera, George E. Uniaxial Stress-Strain Behavior of Unsaturated Soils at High Strain Rates. Fort Belvoir, VA: Defense Technical Information Center, abril de 1994. http://dx.doi.org/10.21236/ada284026.
Texto completo da fonteBrayton, Kelly A., Varda Shkap, Guy H. Palmer, Wendy C. Brown e Thea Molad. Control of Bovine Anaplasmosis: Protective Capacity of the MSP2 Allelic Repertoire. United States Department of Agriculture, janeiro de 2014. http://dx.doi.org/10.32747/2014.7699838.bard.
Texto completo da fonteHolden, T., R. Hosbons e J. Root. CWI1988-Andi-21 Neutron Diffraction of Axial Residual Strains Near a Circumferential Crack. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), janeiro de 1989. http://dx.doi.org/10.55274/r0011391.
Texto completo da fonteKllinski, T., D. Stephens e R. Davis. PR-3-9408-R01 Strain Gage Instrumentation of the GRI Pipeline Simulation Facility Flow Loop. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), outubro de 1996. http://dx.doi.org/10.55274/r0011410.
Texto completo da fonte