Siga este link para ver outros tipos de publicações sobre o tema: Stochastic processes.

Artigos de revistas sobre o tema "Stochastic processes"

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Stochastic processes".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Csenki, A., e J. Medhi. "Stochastic Processes." Statistician 45, n.º 3 (1996): 393. http://dx.doi.org/10.2307/2988486.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Kedem, Benjamin, e J. Medhi. "Stochastic Processes". Technometrics 38, n.º 1 (fevereiro de 1996): 85. http://dx.doi.org/10.2307/1268920.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

PE e Jyotiprasad Medhi. "Stochastic Processes." Journal of the American Statistical Association 90, n.º 430 (junho de 1995): 810. http://dx.doi.org/10.2307/2291116.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

MTW e Sheldon Ross. "Stochastic Processes." Journal of the American Statistical Association 91, n.º 436 (dezembro de 1996): 1754. http://dx.doi.org/10.2307/2291619.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
5

Medhi, J. "Stochastic Processes." Biometrics 51, n.º 1 (março de 1995): 387. http://dx.doi.org/10.2307/2533368.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

PE e Emanuel Parzen. "Stochastic Processes". Journal of the American Statistical Association 95, n.º 451 (setembro de 2000): 1020. http://dx.doi.org/10.2307/2669508.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Frey, Michael. "Stochastic Processes". Technometrics 35, n.º 3 (agosto de 1993): 329–30. http://dx.doi.org/10.1080/00401706.1993.10485336.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Frey, Michael. "Stochastic Processes". Technometrics 39, n.º 2 (maio de 1997): 230–31. http://dx.doi.org/10.1080/00401706.1997.10485094.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
9

Saunders, Ian W., e Sheldon M. Ross. "Stochastic Processes." Journal of the American Statistical Association 80, n.º 389 (março de 1985): 250. http://dx.doi.org/10.2307/2288101.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
10

Casas, J. M., M. Ladra e U. A. Rozikov. "Markov processes of cubic stochastic matrices: Quadratic stochastic processes". Linear Algebra and its Applications 575 (agosto de 2019): 273–98. http://dx.doi.org/10.1016/j.laa.2019.04.016.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Urbanik, K. "Analytic stochastic processes". Studia Mathematica 89, n.º 3 (1988): 261–80. http://dx.doi.org/10.4064/sm-89-3-261-280.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Freeman, J. M., e R. G. Gallager. "Discrete Stochastic Processes." Journal of the Operational Research Society 48, n.º 1 (janeiro de 1997): 103. http://dx.doi.org/10.2307/3009951.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Lund, Robert B., Zdzislaw Brzezniak e Tomasz Zastawniak. "Basic Stochastic Processes". Journal of the American Statistical Association 95, n.º 451 (setembro de 2000): 1019. http://dx.doi.org/10.2307/2669504.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Hoffmann, Marc. "Stationary Stochastic Processes". CHANCE 26, n.º 3 (setembro de 2013): 56–57. http://dx.doi.org/10.1080/09332480.2013.845460.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Dümbgen, Lutz. "Combinatorial stochastic processes". Stochastic Processes and their Applications 52, n.º 1 (agosto de 1994): 75–92. http://dx.doi.org/10.1016/0304-4149(94)90101-5.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Gallager, R. G. "Discrete Stochastic Processes". Journal of the Operational Research Society 48, n.º 1 (janeiro de 1997): 103. http://dx.doi.org/10.1057/palgrave.jors.2600329.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

Gallager, R. G. "Discrete Stochastic Processes". Journal of the Operational Research Society 48, n.º 1 (1997): 103–0103. http://dx.doi.org/10.1038/sj.jors.2600329.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
18

Gudder, Stanley. "Quantum stochastic processes". Foundations of Physics 20, n.º 11 (novembro de 1990): 1345–63. http://dx.doi.org/10.1007/bf01883490.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Dinculeanu, Nicolae. "Vector-valued stochastic processes. V. Optional and predictable variation of stochastic measures and stochastic processes". Proceedings of the American Mathematical Society 104, n.º 2 (1 de fevereiro de 1988): 625. http://dx.doi.org/10.1090/s0002-9939-1988-0962839-8.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
20

Metcalfe, A. V., e G. F. Lawler. "Introduction to Stochastic Processes." Statistician 45, n.º 4 (1996): 533. http://dx.doi.org/10.2307/2988557.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
21

Bingham, Nick, e E. Cinlar. "Seminar on Stochastic Processes." Applied Statistics 42, n.º 2 (1993): 408. http://dx.doi.org/10.2307/2986243.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Applebaum, David, P. W. Jones e P. Smith. "Stochastic Processes, an Introduction". Mathematical Gazette 86, n.º 507 (novembro de 2002): 567. http://dx.doi.org/10.2307/3621201.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
23

Kirmani, S. N. U. A., R. N. Bhattacharya e E. C. Waymire. "Stochastic Processes with Applications". Technometrics 34, n.º 1 (fevereiro de 1992): 99. http://dx.doi.org/10.2307/1269558.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
24

Aurzada, Frank, Martin Kolb, Francoise Pène e Vitali Wachtel. "Stochastic Processes under Constraints". Oberwolfach Reports 17, n.º 4 (13 de setembro de 2021): 1601–56. http://dx.doi.org/10.4171/owr/2020/32.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Holubec, Viktor, Artem Ryabov, Sarah A. M. Loos e Klaus Kroy. "Equilibrium stochastic delay processes". New Journal of Physics 24, n.º 2 (1 de fevereiro de 2022): 023021. http://dx.doi.org/10.1088/1367-2630/ac4b91.

Texto completo da fonte
Resumo:
Abstract Stochastic processes with temporal delay play an important role in science and engineering whenever finite speeds of signal transmission and processing occur. However, an exact mathematical analysis of their dynamics and thermodynamics is available for linear models only. We introduce a class of stochastic delay processes with nonlinear time-local forces and linear time-delayed forces that obey fluctuation theorems and converge to a Boltzmann equilibrium at long times. From the point of view of control theory, such ‘equilibrium stochastic delay processes’ are stable and energetically passive, by construction. Computationally, they provide diverse exact constraints on general nonlinear stochastic delay problems and can, in various situations, serve as a starting point for their perturbative analysis. Physically, they admit an interpretation in terms of an underdamped Brownian particle that is either subjected to a time-local force in a non-Markovian thermal bath or to a delayed feedback force in a Markovian thermal bath. We illustrate these properties numerically for a setup familiar from feedback cooling and point out experimental implications.
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Robinson, P. M., e David Pollard. "Convergence of Stochastic Processes." Economica 52, n.º 208 (novembro de 1985): 529. http://dx.doi.org/10.2307/2553898.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Barbour, A. D., e Sidney I. Resnick. "Adventures in Stochastic Processes." Journal of the American Statistical Association 88, n.º 424 (dezembro de 1993): 1474. http://dx.doi.org/10.2307/2291307.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

PE e G. F. Lawler. "Introduction to Stochastic Processes." Journal of the American Statistical Association 90, n.º 432 (dezembro de 1995): 1493. http://dx.doi.org/10.2307/2291555.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Urbanik, K. "Analytic stochastic processes II". Studia Mathematica 97, n.º 3 (1990): 253–65. http://dx.doi.org/10.4064/sm-97-3-253-265.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Lawler, G. F. "Introduction to Stochastic Processes." Biometrics 53, n.º 2 (junho de 1997): 783. http://dx.doi.org/10.2307/2533988.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Shanmugam, Ramalingam. "Stochastic processes with applications". Journal of Statistical Computation and Simulation 83, n.º 3 (março de 2013): 597–98. http://dx.doi.org/10.1080/00949655.2012.654634.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Freeman, Jim, e J. Medhi. "Stochastic Processes (Second Edition)." Journal of the Operational Research Society 47, n.º 6 (junho de 1996): 836. http://dx.doi.org/10.2307/3010294.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Mathar, Rudolf, Roy D. Yates e David J. Goodman. "Probability and Stochastic Processes". Journal of the American Statistical Association 94, n.º 448 (dezembro de 1999): 1387. http://dx.doi.org/10.2307/2669957.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Veretennikov, Alexander. "Stochastic Processes and Models". Bulletin of the London Mathematical Society 39, n.º 1 (16 de janeiro de 2007): 167–69. http://dx.doi.org/10.1112/blms/bdl020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Kailath, T., e H. V. Poor. "Detection of stochastic processes". IEEE Transactions on Information Theory 44, n.º 6 (1998): 2230–31. http://dx.doi.org/10.1109/18.720538.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

Airila, M. I., e O. Dumbrajs. "Stochastic processes in gyrotrons". Nuclear Fusion 43, n.º 11 (novembro de 2003): 1446–53. http://dx.doi.org/10.1088/0029-5515/43/11/017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

Lund, Robert. "Stochastic Processes. An Introduction". American Statistician 56, n.º 4 (novembro de 2002): 332–33. http://dx.doi.org/10.1198/tas.2002.s205.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

Fricks, John. "Stochastic Processes and Models". Journal of the American Statistical Association 102, n.º 477 (março de 2007): 381. http://dx.doi.org/10.1198/jasa.2007.s166.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Bujorianu, Marius C., Manuela L. Bujorianu e John Lygeros. "TRUE CONCURRENT STOCHASTIC PROCESSES". IFAC Proceedings Volumes 38, n.º 1 (2005): 260–65. http://dx.doi.org/10.3182/20050703-6-cz-1902.00396.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Bauwens, L. "Stochastic Conditional Intensity Processes". Journal of Financial Econometrics 4, n.º 3 (17 de maio de 2006): 450–93. http://dx.doi.org/10.1093/jjfinec/nbj013.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Guillas, Serge. "Doubly stochastic Hilbertian processes". Journal of Applied Probability 39, n.º 3 (setembro de 2002): 566–80. http://dx.doi.org/10.1239/jap/1034082128.

Texto completo da fonte
Resumo:
In this paper, we consider a Hilbert-space-valued autoregressive stochastic sequence (Xn) with several regimes. We suppose that the underlying process (In) which drives the evolution of (Xn) is stationary. Under some dependence assumptions on (In), we prove the existence of a unique stationary solution, and with a symmetric compact autocorrelation operator, we can state a law of large numbers with rates and the consistency of the covariance estimator. An overall hypothesis states that the regimes where the autocorrelation operator's norm is greater than 1 should be rarely visited.
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Freeman, Jim. "Stochastic Processes (Second Edition)". Journal of the Operational Research Society 47, n.º 6 (junho de 1996): 836–37. http://dx.doi.org/10.1057/jors.1996.106.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Eleutério, Samuel, e R. Vilela Mendes. "Stochastic ground-state processes". Physical Review B 50, n.º 8 (15 de agosto de 1994): 5035–40. http://dx.doi.org/10.1103/physrevb.50.5035.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Wendelberger, Joanne R. "Adventures in Stochastic Processes". Technometrics 35, n.º 4 (novembro de 1993): 461. http://dx.doi.org/10.1080/00401706.1993.10485374.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
45

Antoniou, I., e K. Gustafson. "Wavelets and stochastic processes". Mathematics and Computers in Simulation 49, n.º 1-2 (julho de 1999): 81–104. http://dx.doi.org/10.1016/s0378-4754(99)00009-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Hardin, Russell. "Ethics and Stochastic Processes". Social Philosophy and Policy 7, n.º 1 (1989): 69–80. http://dx.doi.org/10.1017/s0265052500001023.

Texto completo da fonte
Resumo:
There is some irony, and perhaps a bit of gallows humor, in opening a paper in this volume with the claim that “applied ethics” is a misnomer. Yet that claim is true in the following sense. What we need for most of the issues that have sparked the contemporary resurgence of moral and political theory is not the application of ethics as we know it, but the revamping of ethics to make it relevant to the issues we face. It is in our concern with major policy programs that ethics and political philosophy are most commonly rejoined to become a unified enquiry after a nearly complete separation through most of this century. Yet, ethical theories may be shaken to their foundations by our effort to apply them to policy problems. I do not propose to revamp ethics here, but only to show that much ethical theory cannot readily be applied to major policy problems.There are at least three important characteristics of major policy issues in general that may give traditional moral theories difficulties. First, such issues can generally be handled only by institutional intervention; they commonly cannot be resolved through uncoordinated individual action. Theories formulated at the individual level must therefore be recast to handle institutional actions and possibilities. Second, major policy issues typically have complicating strategic interactions between individuals at their bases. Third, they are inherently stochastic in the important sense that they affect large numbers with more or less determinable (or merely guessable) probabilities. C. H. Waddington calls such issues instances of “the problem of the ethics of stochastic processes.”
Estilos ABNT, Harvard, Vancouver, APA, etc.
47

Kern, Peter, e Lina Wedrich. "Dilatively semistable stochastic processes". Statistics & Probability Letters 99 (abril de 2015): 101–8. http://dx.doi.org/10.1016/j.spl.2015.01.008.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Guillas, Serge. "Doubly stochastic Hilbertian processes". Journal of Applied Probability 39, n.º 03 (setembro de 2002): 566–80. http://dx.doi.org/10.1017/s002190020002180x.

Texto completo da fonte
Resumo:
In this paper, we consider a Hilbert-space-valued autoregressive stochastic sequence (X n ) with several regimes. We suppose that the underlying process (I n ) which drives the evolution of (X n ) is stationary. Under some dependence assumptions on (I n ), we prove the existence of a unique stationary solution, and with a symmetric compact autocorrelation operator, we can state a law of large numbers with rates and the consistency of the covariance estimator. An overall hypothesis states that the regimes where the autocorrelation operator's norm is greater than 1 should be rarely visited.
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

Singh, Pradyumna S., e Serge G. Lemay. "Stochastic Processes in Electrochemistry". Analytical Chemistry 88, n.º 10 (5 de maio de 2016): 5017–27. http://dx.doi.org/10.1021/acs.analchem.6b00683.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Fleming, Wendell H. "Max-Plus Stochastic Processes". Applied Mathematics and Optimization 49, n.º 2 (1 de março de 2004): 159–81. http://dx.doi.org/10.1007/s00245-003-0785-3.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Oferecemos descontos em todos os planos premium para autores cujas obras estão incluídas em seleções literárias temáticas. Contate-nos para obter um código promocional único!

Vá para a bibliografia