Literatura científica selecionada sobre o tema "Stochastic Fokker-Planck"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Stochastic Fokker-Planck".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Stochastic Fokker-Planck"
Liu, Chang, Chuo Chang e Zhe Chang. "Distribution of Return Transition for Bohm-Vigier Stochastic Mechanics in Stock Market". Symmetry 15, n.º 7 (17 de julho de 2023): 1431. http://dx.doi.org/10.3390/sym15071431.
Texto completo da fonteCoghi, Michele, e Benjamin Gess. "Stochastic nonlinear Fokker–Planck equations". Nonlinear Analysis 187 (outubro de 2019): 259–78. http://dx.doi.org/10.1016/j.na.2019.05.003.
Texto completo da fonteChavanis, Pierre-Henri. "Generalized Stochastic Fokker-Planck Equations". Entropy 17, n.º 5 (13 de maio de 2015): 3205–52. http://dx.doi.org/10.3390/e17053205.
Texto completo da fonteLin, Y. K., e G. Q. Cai. "Equivalent Stochastic Systems". Journal of Applied Mechanics 55, n.º 4 (1 de dezembro de 1988): 918–22. http://dx.doi.org/10.1115/1.3173742.
Texto completo da fonteKOTELENEZ, PETER M. "A QUASI-LINEAR STOCHASTIC FOKKER–PLANCK EQUATION IN σ-FINITE MEASURES". Stochastics and Dynamics 08, n.º 03 (setembro de 2008): 475–504. http://dx.doi.org/10.1142/s021949370800241x.
Texto completo da fonteSun, Xu, Xiaofan Li e Yayun Zheng. "Governing equations for probability densities of Marcus stochastic differential equations with Lévy noise". Stochastics and Dynamics 17, n.º 05 (23 de setembro de 2016): 1750033. http://dx.doi.org/10.1142/s0219493717500332.
Texto completo da fonteHirpara, Ravish Himmatlal, e Shambhu Nath Sharma. "An Analysis of a Wind Turbine-Generator System in the Presence of Stochasticity and Fokker-Planck Equations". International Journal of System Dynamics Applications 9, n.º 1 (janeiro de 2020): 18–43. http://dx.doi.org/10.4018/ijsda.2020010102.
Texto completo da fonteAnnunziato, Mario, e Alfio Borzì. "OPTIMAL CONTROL OF PROBABILITY DENSITY FUNCTIONS OF STOCHASTIC PROCESSES". Mathematical Modelling and Analysis 15, n.º 4 (15 de novembro de 2010): 393–407. http://dx.doi.org/10.3846/1392-6292.2010.15.393-407.
Texto completo da fonteANNUNZIATO, M., e A. BORZI. "FOKKER–PLANCK-BASED CONTROL OF A TWO-LEVEL OPEN QUANTUM SYSTEM". Mathematical Models and Methods in Applied Sciences 23, n.º 11 (23 de julho de 2013): 2039–64. http://dx.doi.org/10.1142/s0218202513500255.
Texto completo da fonteRENNER, CHRISTOPH, J. PEINKE e R. FRIEDRICH. "Experimental indications for Markov properties of small-scale turbulence". Journal of Fluid Mechanics 433 (25 de abril de 2001): 383–409. http://dx.doi.org/10.1017/s0022112001003597.
Texto completo da fonteTeses / dissertações sobre o assunto "Stochastic Fokker-Planck"
Adesina, Owolabi Abiona. "Statistical Modelling and the Fokker-Planck Equation". Thesis, Blekinge Tekniska Högskola, Sektionen för ingenjörsvetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-1177.
Texto completo da fonteGuillouzic, Steve. "Fokker-Planck approach to stochastic delay differential equations". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ58279.pdf.
Texto completo da fonteNoble, Patrick. "Stochastic processes in Astrophysics". Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10013.
Texto completo da fonteLi, Wuchen. "A study of stochastic differential equations and Fokker-Planck equations with applications". Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54999.
Texto completo da fonteMiserocchi, Andrea. "The Fokker-Planck equation as model for the stochastic gradient descent in deep learning". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18290/.
Texto completo da fonteЮщенко, Ольга Володимирівна, Ольга Владимировна Ющенко, Olha Volodymyrivna Yushchenko, Тетяна Іванівна Жиленко, Татьяна Ивановна Жиленко e Tetiana Ivanivna Zhylenko. "Description of the Stochastic Condensation Process under Quasi-Equilibrium Conditions". Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/34910.
Texto completo da fonteДенисов, Станіслав Іванович, Станислав Иванович Денисов, Stanislav Ivanovych Denysov, V. V. Reva e O. O. Bondar. "Generalized Fokker-Planck Equation for the Nanoparticle Magnetic Moment Driven by Poisson White Noise". Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35373.
Texto completo da fonteLi, Yao. "Stochastic perturbation theory and its application to complex biological networks -- a quantification of systematic features of biological networks". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/49013.
Texto completo da fonteVellmer, Sebastian. "Applications of the Fokker-Planck Equation in Computational and Cognitive Neuroscience". Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21597.
Texto completo da fonteThis thesis is concerned with the calculation of statistics, in particular the power spectra, of point processes generated by stochastic multidimensional integrate-and-fire (IF) neurons, networks of IF neurons and decision-making models from the corresponding Fokker-Planck equations. In the brain, information is encoded by sequences of action potentials. In studies that focus on spike timing, IF neurons that drastically simplify the spike generation have become the standard model. One-dimensional IF neurons do not suffice to accurately model neural dynamics, however, the extension towards multiple dimensions yields realistic behavior at the price of growing complexity. The first part of this work develops a theory of spike-train power spectra for stochastic, multidimensional IF neurons. From the Fokker-Planck equation, a set of partial differential equations is derived that describes the stationary probability density, the firing rate and the spike-train power spectrum. In the second part of this work, a mean-field theory of large and sparsely connected homogeneous networks of spiking neurons is developed that takes into account the self-consistent temporal correlations of spike trains. Neural input is approximated by colored Gaussian noise generated by a multidimensional Ornstein-Uhlenbeck process of which the coefficients are initially unknown but determined by the self-consistency condition and define the solution of the theory. To explore heterogeneous networks, an iterative scheme is extended to determine the distribution of spectra. In the third part, the Fokker-Planck equation is applied to calculate the statistics of sequences of binary decisions from diffusion-decision models (DDM). For the analytically tractable DDM, the statistics are calculated from the corresponding Fokker-Planck equation. To determine the statistics for nonlinear models, the threshold-integration method is generalized.
Sjöberg, Paul. "Numerical Methods for Stochastic Modeling of Genes and Proteins". Doctoral thesis, Uppsala universitet, Avdelningen för teknisk databehandling, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8293.
Texto completo da fonteLivros sobre o assunto "Stochastic Fokker-Planck"
Frank, T. D. Nonlinear Fokker-Planck equations: Fundamentals and applications. Berlin: Springer, 2004.
Encontre o texto completo da fonteGrasman, Johan. Asymptotic methods for the Fokker-Planck equation and the exit problem in applications. Berlin: Springer, 1999.
Encontre o texto completo da fonteChirikjian, Gregory S. Stochastic models, information theory, and lie groups. Boston: Birkhäuser, 2009.
Encontre o texto completo da fonteFokker-Planck-Kolmogorov equations. Providence, Rhode Island: American Mathematical Society, 2015.
Encontre o texto completo da fonteKrylov, Nicolai V., Michael Rockner, Vladimir I. Bogachev e Stanislav V. Shaposhnikov. Fokker-Planck-Kolmogorov Equations. American Mathematical Society, 2015.
Encontre o texto completo da fonteNonlinear Fokker-Planck equations: Fundamentals and applications. Berlin: Springer, 2005.
Encontre o texto completo da fontePavliotis, Grigorios A. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer, 2014.
Encontre o texto completo da fontePavliotis, Grigorios A. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer, 2016.
Encontre o texto completo da fontePavliotis, Grigorios A. Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Springer London, Limited, 2014.
Encontre o texto completo da fonteMcClintock, P. V. E., e Frank Moss. Noise in Nonlinear Dynamical Systems Vol. 1: Theory of Continuous Fokker-Planck Systems. Cambridge University Press, 2007.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Stochastic Fokker-Planck"
Loos, Sarah A. M. "Fokker-Planck Equations". In Stochastic Systems with Time Delay, 77–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80771-9_3.
Texto completo da fonteLoos, Sarah A. M. "Infinite Fokker-Planck Hierarchy". In Stochastic Systems with Time Delay, 121–36. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80771-9_5.
Texto completo da fonteRodean, Howard C. "The Fokker-Planck Equation". In Stochastic Lagrangian Models of Turbulent Diffusion, 19–24. Boston, MA: American Meteorological Society, 1996. http://dx.doi.org/10.1007/978-1-935704-11-9_5.
Texto completo da fonteQian, Hong, e Hao Ge. "Stochastic Processes, Fokker-Planck Equation". In Encyclopedia of Systems Biology, 2000–2004. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_279.
Texto completo da fonteBogachev, Vladimir I. "Stationary Fokker–Planck–Kolmogorov Equations". In Stochastic Partial Differential Equations and Related Fields, 3–24. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74929-7_1.
Texto completo da fonteDa Prato, Giuseppe. "Fokker–Planck Equations in Hilbert Spaces". In Stochastic Partial Differential Equations and Related Fields, 101–29. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74929-7_5.
Texto completo da fonteMöhl, Dieter. "The Distribution Function and Fokker-Planck Equations". In Stochastic Cooling of Particle Beams, 91–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34979-9_7.
Texto completo da fonteCarmichael, Howard J. "Fokker—Planck Equations and Stochastic Differential Equations". In Statistical Methods in Quantum Optics 1, 147–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03875-8_5.
Texto completo da fonteShaposhnikov, Stanislav V. "Nonlinear Fokker–Planck–Kolmogorov Equations for Measures". In Stochastic Partial Differential Equations and Related Fields, 367–79. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74929-7_24.
Texto completo da fonteYoshida, T., e S. Yanagita. "A Stochastic Simulation Method for Fokker-Planck Equations". In Numerical Astrophysics, 399–400. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4780-4_121.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Stochastic Fokker-Planck"
Metzler, Ralf. "From the Langevin equation to the fractional Fokker–Planck equation". In Stochastic and chaotic dynamics in the lakes. AIP, 2000. http://dx.doi.org/10.1063/1.1302409.
Texto completo da fonteHolliday, G. S., e Surendra Singh. "Second harmonic generation in the positive P-representation". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.wr6.
Texto completo da fonteAllison, A. "Stochastic Resonance, Brownian Ratchets and the Fokker-Planck Equation". In UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS: UPoN 2002: Third International Conference on Unsolved Problems of Noise and Fluctuations in Physics, Biology, and High Technology. AIP, 2003. http://dx.doi.org/10.1063/1.1584877.
Texto completo da fonteWedig, Walter V., e Utz von Wagner. "Stochastic Car Vibrations With Strong Nonlinearities". In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21605.
Texto completo da fonteWang, Yan. "Simulating Drift-Diffusion Processes With Generalized Interval Probability". In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70699.
Texto completo da fonteClaussen, Jens Christian. "Discrete stochastic processes, replicator and Fokker-Planck equations of coevolutionary dynamics in finite and infinite populations". In Stochastic Models in Biological Sciences. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc80-0-1.
Texto completo da fonteKumar, Mrinal, Suman Chakravorty e John Junkins. "Computational Nonlinear Stochastic Control Based on the Fokker-Planck-Kolmogorov Equation". In AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-6477.
Texto completo da fonteHorowicz, R. J., e L. A. Lugiato. "Noise Effects In Optical Bistability". In Instabilities and Dynamics of Lasers and Nonlinear Optical Systems. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/idlnos.1985.wd2.
Texto completo da fonteKikuchi, T., S. Kawata e T. Katayama. "Numerical solver with cip method for Fokker Planck equation of stochastic cooling". In 2007 IEEE Particle Accelerator Conference (PAC). IEEE, 2007. http://dx.doi.org/10.1109/pac.2007.4440417.
Texto completo da fonteDas, Shreepriya, Haris Vikalo e Arjang Hassibi. "Stochastic modeling of reaction kinetics in biosensors using the Fokker Planck equation". In 2009 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS). IEEE, 2009. http://dx.doi.org/10.1109/gensips.2009.5174363.
Texto completo da fonteRelatórios de organizações sobre o assunto "Stochastic Fokker-Planck"
Marriner, John. Simulations of Transverse Stochastic Cooling Using the Fokker-Planck Equation. Office of Scientific and Technical Information (OSTI), março de 1998. http://dx.doi.org/10.2172/1985058.
Texto completo da fonteKumar, Manish, e Subramanian Ramakrishnan. Modeling and Analysis of Stochastic Dynamics and Emergent Phenomena in Swarm Robotic Systems Using the Fokker-Planck Formalism. Fort Belvoir, VA: Defense Technical Information Center, outubro de 2010. http://dx.doi.org/10.21236/ada547014.
Texto completo da fonteYu, D., e S. Chakravorty. A Multi-Resolution Approach to the Fokker-Planck-Kolmogorov Equation with Application to Stochastic Nonlinear Filtering and Optimal Design. Fort Belvoir, VA: Defense Technical Information Center, dezembro de 2012. http://dx.doi.org/10.21236/ada582272.
Texto completo da fonteSnyder, Victor A., Dani Or, Amos Hadas e S. Assouline. Characterization of Post-Tillage Soil Fragmentation and Rejoining Affecting Soil Pore Space Evolution and Transport Properties. United States Department of Agriculture, abril de 2002. http://dx.doi.org/10.32747/2002.7580670.bard.
Texto completo da fonte