Literatura científica selecionada sobre o tema "Stochastic Differential Equations (SDE)"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Stochastic Differential Equations (SDE)".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Stochastic Differential Equations (SDE)"
Eliazar, Iddo. "Selfsimilar stochastic differential equations". Europhysics Letters 136, n.º 4 (1 de novembro de 2021): 40002. http://dx.doi.org/10.1209/0295-5075/ac4dd4.
Texto completo da fonteIddrisu, Wahab A., Inusah Iddrisu e Abdul-Karim Iddrisu. "Modeling Cholera Epidemiology Using Stochastic Differential Equations". Journal of Applied Mathematics 2023 (9 de maio de 2023): 1–17. http://dx.doi.org/10.1155/2023/7232395.
Texto completo da fonteIMKELLER, PETER, e CHRISTIAN LEDERER. "THE COHOMOLOGY OF STOCHASTIC AND RANDOM DIFFERENTIAL EQUATIONS, AND LOCAL LINEARIZATION OF STOCHASTIC FLOWS". Stochastics and Dynamics 02, n.º 02 (junho de 2002): 131–59. http://dx.doi.org/10.1142/s021949370200039x.
Texto completo da fonteBriand, Phillippe, Abir Ghannoum e Céline Labart. "Mean reflected stochastic differential equations with jumps". Advances in Applied Probability 52, n.º 2 (junho de 2020): 523–62. http://dx.doi.org/10.1017/apr.2020.11.
Texto completo da fonteArmstrong, J., e D. Brigo. "Intrinsic stochastic differential equations as jets". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, n.º 2210 (fevereiro de 2018): 20170559. http://dx.doi.org/10.1098/rspa.2017.0559.
Texto completo da fonteBahlali, K., A. Elouaflin e M. N'zi. "Backward stochastic differential equations with stochastic monotone coefficients". Journal of Applied Mathematics and Stochastic Analysis 2004, n.º 4 (1 de janeiro de 2004): 317–35. http://dx.doi.org/10.1155/s1048953304310038.
Texto completo da fonteRezaeyan, Ramzan. "Application of Stochastic Differential Equation and Optimal Control for Engineering Problems". Advanced Materials Research 383-390 (novembro de 2011): 972–75. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.972.
Texto completo da fonteFekete, Dorottya, Joaquin Fontbona e Andreas E. Kyprianou. "Skeletal stochastic differential equations for superprocesses". Journal of Applied Probability 57, n.º 4 (23 de novembro de 2020): 1111–34. http://dx.doi.org/10.1017/jpr.2020.53.
Texto completo da fonteStoyanov, Jordan, e Dobrin Botev. "Quantitative results for perturbed stochastic differential equations". Journal of Applied Mathematics and Stochastic Analysis 9, n.º 3 (1 de janeiro de 1996): 255–61. http://dx.doi.org/10.1155/s104895339600024x.
Texto completo da fonteChaharpashlou, Reza, Reza Saadati e António M. Lopes. "Fuzzy Mittag–Leffler–Hyers–Ulam–Rassias Stability of Stochastic Differential Equations". Mathematics 11, n.º 9 (4 de maio de 2023): 2154. http://dx.doi.org/10.3390/math11092154.
Texto completo da fonteTeses / dissertações sobre o assunto "Stochastic Differential Equations (SDE)"
Nass, Aminu Ma'aruf. "Point symmetry methods for Itô Stochastic Differential Equations (SDE) with a finite jump process". Doctoral thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/25387.
Texto completo da fonteHandari, Bevina D. "Numerical methods for SDEs and their dynamics /". [St. Lucia, Qld.], 2002. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17145.pdf.
Texto completo da fonteSalhi, Rym. "Contributions to quadratic backward stochastic differential equations with jumps and applications". Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1023.
Texto completo da fonteThis thesis focuses on backward stochastic differential equation with jumps and their applications. In the first chapter, we study a backward stochastic differential equation (BSDE for short) driven jointly by a Brownian motion and an integer valued random measure that may have infinite activity with compensator being possibly time inhomogeneous. In particular, we are concerned with the case where the driver has quadratic growth and unbounded terminal condition. The existence and uniqueness of the solution are proven by combining a monotone approximation technics and a forward approach. Chapter 2 is devoted to the well-posedness of generalized doubly reflected BSDEs (GDRBSDE for short) with jumps under weaker assumptions on the data. In particular, we study the existence of a solution for a one-dimensional GDRBSDE with jumps when the terminal condition is only measurable with respect to the related filtration and when the coefficient has general stochastic quadratic growth. We also show, in a suitable framework, the connection between our class of backward stochastic differential equations and risk sensitive zero-sum game. In chapter 3, we investigate a general class of fully coupled mean field forward-backward under weak monotonicity conditions without assuming any non-degeneracy assumption on the forward equation. We derive existence and uniqueness results under two different sets of conditions based on proximation schema weither on the forward or the backward equation. Later, we give an application for storage in smart grids
Alnafisah, Yousef Ali. "First-order numerical schemes for stochastic differential equations using coupling". Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/20420.
Texto completo da fonteManai, Arij. "Some contributions to backward stochastic differential equations and applications". Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1022.
Texto completo da fonteThis thesis is dedicated to the study of backward stochastic differential equations (BSDEs) and their applications. In chapter 1, we study the problem of maximizing the utility from terminal wealth where the stock price may jump and there are investment constraints on the agent 's strategies. We focus on the BSDE whose solution represents the maximal utility, which allows transferring results on quadratic BSDEs, in particular the stability results, to the problem of utility maximisation. In chapter 2, we consider the problem of pricing American options from theoretical and numerical sides based upon an alternative representation of the value of the option in the form of a viscosity solution of a parabolic equation with a nonlinear reaction term. We extend the viscosity solution characterization proved in [Benth, Karlsen and Reikvam 2003] for call/put American option prices to the case of a general payoff function in a multi-dimensional setting. We address two new numerical schemes inspired by the branching processes. Our numerical experiments show that approximating the discontinuous driver of the associated reaction/diffusion PDE by local polynomials is not efficient, while a simple randomization procedure provides very good results. In chapter 3, we prove existence and uniqueness results for a general class of coupled mean-field forward-backward SDEs with jumps under weak monotonicity conditions and without the non-degeneracy assumption on the forward equation and we give an application in the field of storage in smart grids in the case where the production of electricity is unpredictable
Leahy, James-Michael. "On parabolic stochastic integro-differential equations : existence, regularity and numerics". Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10569.
Texto completo da fonteYannios, Nicholas, e mikewood@deakin edu au. "Computational aspects of the numerical solution of SDEs". Deakin University. School of Computing and Mathematics, 2001. http://tux.lib.deakin.edu.au./adt-VDU/public/adt-VDU20060817.123449.
Texto completo da fonteTodeschi, Tiziano. "Calibration of local-stochastic volatility models with neural networks". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23052/.
Texto completo da fonteHerdiana, Ratna. "Numerical methods for SDEs - with variable stepsize implementation /". [St. Lucia, Qld.], 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17638.pdf.
Texto completo da fonteYue, Wen. "Absolute continuity of the laws, existence and uniqueness of solutions of some SDEs and SPDEs". Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/absolute-continuity-of-the-laws-existence-and-uniqueness-of-solutions-of-some-sdes-and-spdes(2bc80de8-7c36-453f-a7c2-69fa4ee0e705).html.
Texto completo da fonteLivros sobre o assunto "Stochastic Differential Equations (SDE)"
Pardoux, Etienne, e Aurel Rӑşcanu. Stochastic Differential Equations, Backward SDEs, Partial Differential Equations. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05714-9.
Texto completo da fonteKloeden, Peter E. Numerical solution of SDE through computer experiments. 2a ed. Berlin: Springer, 1997.
Encontre o texto completo da fonteØksendal, Bernt. Stochastic Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02847-6.
Texto completo da fonteØksendal, Bernt. Stochastic Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03185-8.
Texto completo da fonteØksendal, Bernt. Stochastic Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-14394-6.
Texto completo da fontePanik, Michael J. Stochastic Differential Equations. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119377399.
Texto completo da fonteØksendal, Bernt. Stochastic Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-13050-6.
Texto completo da fonteØksendal, Bernt. Stochastic Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-02574-1.
Texto completo da fonteSobczyk, Kazimierz. Stochastic Differential Equations. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3712-6.
Texto completo da fonteCecconi, Jaures, ed. Stochastic Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11079-5.
Texto completo da fonteCapítulos de livros sobre o assunto "Stochastic Differential Equations (SDE)"
Hassler, Uwe. "Stochastic Differential Equations (SDE)". In Stochastic Processes and Calculus, 261–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23428-1_12.
Texto completo da fonteKim, Jin Won, e Sebastian Reich. "On Forward–Backward SDE Approaches to Conditional Estimation". In Mathematics of Planet Earth, 115–36. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70660-8_6.
Texto completo da fonteZhang, Jianfeng. "Reflected Backward SDEs". In Backward Stochastic Differential Equations, 133–60. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7256-2_6.
Texto completo da fonteZhang, Jianfeng. "Forward-Backward SDEs". In Backward Stochastic Differential Equations, 177–201. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7256-2_8.
Texto completo da fonteBreda, Dimitri, Jung Kyu Canci e Raffaele D’Ambrosio. "An Invitation to Stochastic Differential Equations in Healthcare". In Quantitative Models in Life Science Business, 97–110. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11814-2_6.
Texto completo da fonteLiu, Wei, e Michael Röckner. "SDEs in Finite Dimensions". In Stochastic Partial Differential Equations: An Introduction, 55–68. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22354-4_3.
Texto completo da fonteLiu, Wei, e Michael Röckner. "SDEs in Infinite Dimensions and Applications to SPDEs". In Stochastic Partial Differential Equations: An Introduction, 69–121. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22354-4_4.
Texto completo da fonteBruned, Y., I. Chevyrev e P. K. Friz. "Examples of Renormalized SDEs". In Stochastic Partial Differential Equations and Related Fields, 303–17. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74929-7_19.
Texto completo da fonteChassagneux, Jean-François, Hinesh Chotai e Mirabelle Muûls. "Introduction to Forward-Backward Stochastic Differential Equations". In A Forward-Backward SDEs Approach to Pricing in Carbon Markets, 11–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63115-8_2.
Texto completo da fonteKohatsu-Higa, Arturo, e Atsushi Takeuchi. "Flows Associated with Stochastic Differential Equations with Jumps". In Jump SDEs and the Study of Their Densities, 145–54. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9741-8_7.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Stochastic Differential Equations (SDE)"
Sul, Jinhwan, Jungin E. Kim e Yan Wang. "Quantum Functional Expansion to Solve Stochastic Differential Equations". In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), 552–59. IEEE, 2024. https://doi.org/10.1109/qce60285.2024.00071.
Texto completo da fonteHe, Li, Qi Meng, Wei Chen, Zhi-Ming Ma e Tie-Yan Liu. "Differential Equations for Modeling Asynchronous Algorithms". In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/307.
Texto completo da fonteMukherjee, Arpan, Rahul Rai, Puneet Singla, Tarunraj Singh e Abani Patra. "An Adaptive Gaussian Mixture Model Approach Based Framework for Solving Fokker-Planck Kolmogorov Equation Related to High Dimensional Dynamical Systems". In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60312.
Texto completo da fonteWang, Yan. "Simulating Stochastic Diffusions by Quantum Walks". In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12739.
Texto completo da fonteJha, Sumit, Rickard Ewetz, Alvaro Velasquez e Susmit Jha. "On Smoother Attributions using Neural Stochastic Differential Equations". In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/73.
Texto completo da fonteLeung, Chin-wing, Shuyue Hu e Ho-fung Leung. "Modelling the Dynamics of Multi-Agent Q-learning: The Stochastic Effects of Local Interaction and Incomplete Information". In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/55.
Texto completo da fonteKim, Jongwan, DongJin Lee, Byunggook Na, Seongsik Park, Jeonghee Jo e Sungroh Yoon. "Notice of Retraction: E2V-SDE: From Asynchronous Events to Fast and Continuous Video Reconstruction via Neural Stochastic Differential Equations". In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022. http://dx.doi.org/10.1109/cvpr52688.2022.01319.
Texto completo da fontePrimeau, Louis, Amirali Amirsoleimani e Roman Genov. "SDEX: Monte Carlo Simulation of Stochastic Differential Equations on Memristor Crossbars". In 2022 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2022. http://dx.doi.org/10.1109/iscas48785.2022.9937861.
Texto completo da fonteWu, Jinglai, Yunqing Zhang, Pengfei Chen e Liping Chen. "Numerical Solution of Stochastic Differential Equations with Application to Vehicle Handling". In SAE 2010 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2010. http://dx.doi.org/10.4271/2010-01-0912.
Texto completo da fonteWang, Yan. "Accelerating Stochastic Dynamics Simulation With Continuous-Time Quantum Walks". In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59420.
Texto completo da fonteRelatórios de organizações sobre o assunto "Stochastic Differential Equations (SDE)"
Christensen, S. K., e G. Kallianpur. Stochastic Differential Equations for Neuronal Behavior. Fort Belvoir, VA: Defense Technical Information Center, junho de 1985. http://dx.doi.org/10.21236/ada159099.
Texto completo da fonteDalang, Robert C., e N. Frangos. Stochastic Hyperbolic and Parabolic Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, julho de 1994. http://dx.doi.org/10.21236/ada290372.
Texto completo da fonteJiang, Bo, Roger Brockett, Weibo Gong e Don Towsley. Stochastic Differential Equations for Power Law Behaviors. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2012. http://dx.doi.org/10.21236/ada577839.
Texto completo da fonteSharp, D. H., S. Habib e M. B. Mineev. Numerical Methods for Stochastic Partial Differential Equations. Office of Scientific and Technical Information (OSTI), julho de 1999. http://dx.doi.org/10.2172/759177.
Texto completo da fonteJones, Richard H. Fitting Stochastic Partial Differential Equations to Spatial Data. Fort Belvoir, VA: Defense Technical Information Center, setembro de 1993. http://dx.doi.org/10.21236/ada279870.
Texto completo da fonteGarrison, J. C. Stochastic differential equations and numerical simulation for pedestrians. Office of Scientific and Technical Information (OSTI), julho de 1993. http://dx.doi.org/10.2172/10184120.
Texto completo da fonteXiu, Dongbin, e George E. Karniadakis. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2003. http://dx.doi.org/10.21236/ada460654.
Texto completo da fonteChow, Pao-Liu, e Jose-Luis Menaldi. Stochastic Partial Differential Equations in Physical and Systems Sciences. Fort Belvoir, VA: Defense Technical Information Center, novembro de 1986. http://dx.doi.org/10.21236/ada175400.
Texto completo da fonteBudhiraja, Amarjit, Paul Dupuis e Arnab Ganguly. Moderate Deviation Principles for Stochastic Differential Equations with Jumps. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 2014. http://dx.doi.org/10.21236/ada616930.
Texto completo da fonteWebster, Clayton G., Guannan Zhang e Max D. Gunzburger. An adaptive wavelet stochastic collocation method for irregular solutions of stochastic partial differential equations. Office of Scientific and Technical Information (OSTI), outubro de 2012. http://dx.doi.org/10.2172/1081925.
Texto completo da fonte