Artigos de revistas sobre o tema "STK10"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "STK10".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Ma, Jin-Xia, Dan-Dan Xu, Shun-Yuan Lu, Qian-Lan Wang, Lu Zhang, Rui Guo, Ling-Yun Tang et al. "Stk10 Deficiency in Mice Promotes Tumor Growth by Dysregulating the Tumor Microenvironment". Biology 11, n.º 11 (15 de novembro de 2022): 1668. http://dx.doi.org/10.3390/biology11111668.
Texto completo da fonteLong, Zhangbiao, Jichun Yang, Xinyao Liu, Min Ruan, Danchen Meng, Junling Zhuang, Zhenqi Huang, Jian Ge e Bing Han. "STK10 Mutation Block Erythropoiesis in Acquired Pure Red Cell Aplasia Via Down-Regulated the Ribosome Biosynthesis". Blood 142, Supplement 1 (28 de novembro de 2023): 3825. http://dx.doi.org/10.1182/blood-2023-189722.
Texto completo da fonteFUKUMURA, KAZUTAKA, YOSHIHIRO YAMASHITA, MASAHITO KAWAZU, EIRIN SAI, SHIN-ICHIRO FUJIWARA, NAOYA NAKAMURA, KENGO TAKEUCHI et al. "STK10 missense mutations associated with anti-apoptotic function". Oncology Reports 30, n.º 4 (9 de julho de 2013): 1542–48. http://dx.doi.org/10.3892/or.2013.2605.
Texto completo da fonteZhang, Lu, Shun-Yuan Lu, Rui Guo, Jin-Xia Ma, Ling-Yun Tang, Yan Shen, Chun-Ling Shen et al. "Knockout of STK10 promotes the migration and invasion of cervical cancer cells". Translational Cancer Research 9, n.º 11 (novembro de 2020): 7079–90. http://dx.doi.org/10.21037/tcr-20-1601.
Texto completo da fonteWalter, Sarah A., Richard E. Cutler, Ricardo Martinez, Mikhail Gishizky e Ronald J. Hill. "Stk10, a New Member of the Polo-like Kinase Kinase Family Highly Expressed in Hematopoietic Tissue". Journal of Biological Chemistry 278, n.º 20 (13 de março de 2003): 18221–28. http://dx.doi.org/10.1074/jbc.m212556200.
Texto completo da fonteAsquith, Christopher R. M., Tuomo Laitinen, James M. Bennett, Carrow I. Wells, Jonathan M. Elkins, William J. Zuercher, Graham J. Tizzard e Antti Poso. "Design and Analysis of the 4‐Anilinoquin(az)oline Kinase Inhibition Profiles of GAK/SLK/STK10 Using Quantitative Structure‐Activity Relationships". ChemMedChem 15, n.º 1 (26 de novembro de 2019): 26–49. http://dx.doi.org/10.1002/cmdc.201900521.
Texto completo da fonteKuramochi, Satomi, Yoichi Matsuda, Fujiko Kitamura, Mieko Okamoto, Hajime Karasuyama e Hiromichi Yonekawa. "Molecular cloning of the human gene STK10 encoding lymphocyte-oriented kinase, and comparative chromosomal mapping of the human, mouse, and rat homologues". Immunogenetics 49, n.º 5 (7 de abril de 1999): 369–75. http://dx.doi.org/10.1007/s002510050509.
Texto completo da fonteAsquith, Christopher R. M., Tuomo Laitinen, James M. Bennett, Carrow I. Wells, Jonathan M. Elkins, William J. Zuercher, Graham J. Tizzard e Antti Poso. "Cover Feature: Design and Analysis of the 4‐Anilinoquin(az)oline Kinase Inhibition Profiles of GAK/SLK/STK10 Using Quantitative Structure‐Activity Relationships (ChemMedChem 1/2020)". ChemMedChem 15, n.º 1 (7 de janeiro de 2020): 2. http://dx.doi.org/10.1002/cmdc.201900691.
Texto completo da fonteSugawara, Yo, Hideharu Hagiya, Yukihiro Akeda, Dan Takeuchi, Noriko Sakamoto, Yuki Matsumoto, Daisuke Motooka, Isao Nishi, Kazunori Tomono e Shigeyuki Hamada. "Community spread and acquisition of clinically relevant Escherichia coli harbouring blaNDM among healthy Japanese residents of Yangon, Myanmar". Journal of Antimicrobial Chemotherapy 76, n.º 6 (24 de março de 2021): 1448–54. http://dx.doi.org/10.1093/jac/dkab070.
Texto completo da fonteKaouass, M., M. Audette, D. Ramotar, S. Verma, D. De Montigny, I. Gamache, K. Torossian e R. Poulin. "The STK2 gene, which encodes a putative Ser/Thr protein kinase, is required for high-affinity spermidine transport in Saccharomyces cerevisiae." Molecular and Cellular Biology 17, n.º 6 (junho de 1997): 2994–3004. http://dx.doi.org/10.1128/mcb.17.6.2994.
Texto completo da fonteBange, Erin, Melina E. Marmarelis, Wei-Ting Hwang, Yu-Xiao Yang, Jeffrey C. Thompson, Jason Rosenbaum, Joshua M. Bauml et al. "Impact of KRAS and TP53 Co-Mutations on Outcomes After First-Line Systemic Therapy Among Patients With STK11-Mutated Advanced Non–Small-Cell Lung Cancer". JCO Precision Oncology, n.º 3 (dezembro de 2019): 1–11. http://dx.doi.org/10.1200/po.18.00326.
Texto completo da fonteTanaka, Susumu, Yoshiko Honda, Misa Sawachika, Kensuke Futani, Namika Yoshida e Tohru Kodama. "Degradation of STK16 via KCTD17 with Ubiquitin–Proteasome System in Relation to Sleep–Wake Cycle". Kinases and Phosphatases 1, n.º 1 (22 de dezembro de 2022): 14–22. http://dx.doi.org/10.3390/kinasesphosphatases1010003.
Texto completo da fonteKlein, Alexandra, Daniela Flügel e Thomas Kietzmann. "Transcriptional Regulation of Serine/Threonine Kinase-15 (STK15) Expression by Hypoxia and HIF-1". Molecular Biology of the Cell 19, n.º 9 (setembro de 2008): 3667–75. http://dx.doi.org/10.1091/mbc.e08-01-0042.
Texto completo da fonteHan, Yun, e Junyan Su. "The landscape of STK11 mutations and hotspots in Chinese patients with solid tumors." Journal of Clinical Oncology 40, n.º 16_suppl (1 de junho de 2022): e15112-e15112. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.e15112.
Texto completo da fonteFigueroa-González, Gabriela, José F. Carrillo-Hernández, Itzel Perez-Rodriguez, David Cantú de León, Alma D. Campos-Parra, Antonio D. Martínez-Gutiérrez, Jossimar Coronel-Hernández et al. "Negative Regulation of Serine Threonine Kinase 11 (STK11) through miR-100 in Head and Neck Cancer". Genes 11, n.º 9 (8 de setembro de 2020): 1058. http://dx.doi.org/10.3390/genes11091058.
Texto completo da fonteAhronian, Leanne G., Preksha Shahagadkar, Lauren Flynn, Lauren Grove, Shangtao Liu, Samuel R. Meier, Binzheng Shen et al. "Abstract 5584: Experimental ‘loss-of function’ annotation of STK11 mutations with prognostic and therapeutic implications (TNG260mutationfinder.com)". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 5584. http://dx.doi.org/10.1158/1538-7445.am2024-5584.
Texto completo da fonteEksioglu, Eria, Gabriela M. Wright, Trent R. Percy, Kenneth L. Wright e W. Douglas Cress. "Abstract 4454: Loss of CX3CL1 expression mediates immune evasion in STK11 mutated lung adenocarcinomas". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 4454. http://dx.doi.org/10.1158/1538-7445.am2023-4454.
Texto completo da fonteIglesia, Michael, Moh'd M. Khushman, Kian-Huat Lim, Brian Andrew Van Tine, Jingxia Liu, Katrina Sophia Pedersen, Xiuli Liu et al. "STK11 alterations as predictive biomarkers of resistance to immune checkpoint inhibitors in multiple cancers with mismatch repair gene alterations." Journal of Clinical Oncology 41, n.º 16_suppl (1 de junho de 2023): 2619. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.2619.
Texto completo da fonteNaqash, Abdul Rafeh, Charalampos S. Floudas, Asaf Maoz, Joanne Xiu, Yasmine Baca, Jia Zeng, Chul Kim et al. "STK11/TP53 co-mutated non-small cell lung cancer (NSCLC) to display a unique tumor microenvironment (TME) and metabolic profile." Journal of Clinical Oncology 39, n.º 15_suppl (20 de maio de 2021): 9087. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.9087.
Texto completo da fonteDonnelly, Liam L., Tyler C. Hogan, Sean M. Lenahan, Gopika Nandagopal, Jenna G. Eaton, Meagan A. Lebeau, Cai L. McCann et al. "Functional assessment of somatic STK11 variants identified in primary human non-small cell lung cancers". Carcinogenesis 42, n.º 12 (19 de novembro de 2021): 1428–38. http://dx.doi.org/10.1093/carcin/bgab104.
Texto completo da fonteRobé, Caroline, Katrin Daehre, Roswitha Merle, Anika Friese, Sebastian Guenther e Uwe Roesler. "Impact of different management measures on the colonization of broiler chickens with ESBL- and pAmpC- producing Escherichia coli in an experimental seeder-bird model". PLOS ONE 16, n.º 1 (7 de janeiro de 2021): e0245224. http://dx.doi.org/10.1371/journal.pone.0245224.
Texto completo da fonteKaufman, Jacob, Dwight Hall Owen, Regan Michelle Memmott, Gregory Alan Otterson, Kai He, Carolyn J. Presley, Daniel Spakowicz et al. "Novel STK11 differentiation phenotype classifier STK11-DPC: Immunosuppressive tumor microenvironment (TME) and response to immune checkpoint blockade (ICB) in STK11-deficient NSCLC." Journal of Clinical Oncology 41, n.º 16_suppl (1 de junho de 2023): 2626. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.2626.
Texto completo da fontePrior, Shannon, Logan Sands, Sean Lenahan, Hailey Sarausky, Melissa Scheiber, David Seward e Paula Deming. "Abstract 1791: Metabolic rewiring promotes metastatic potential upon glutamine deprivation in STK11 null KRAS-driven lung adenocarcinoma". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 1791. http://dx.doi.org/10.1158/1538-7445.am2024-1791.
Texto completo da fonteNandagopal, Gopika, Sean Lenahan, Hannah Ross, Hailey Sarausky, David Seward e Paula Deming. "Abstract 2751: Functional assessment of STK11 C-terminal domain variants". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 2751. http://dx.doi.org/10.1158/1538-7445.am2024-2751.
Texto completo da fonteSuzuki, Sora, Catrina Ting, Bojidar Kandar, Te-An Chen, Anm Nazmul Khan, Thejaswini Giridharan, Brahm Segal e Edwin H. Yau. "Abstract 108: Tumor-derived complement C3 is overexpressed in STK11 mutant non-small cell lung cancer and contributes to an immunosuppressive tumor microenvironment in a syngeneic mouse model". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 108. http://dx.doi.org/10.1158/1538-7445.am2024-108.
Texto completo da fonteGERHOLD, G., M. H. SCHULZE, U. GROSS e W. BOHNE. "Multilocus sequence typing and CTX-M characterization of ESBL-producing E. coli: a prospective single-centre study in Lower Saxony, Germany". Epidemiology and Infection 144, n.º 15 (30 de junho de 2016): 3300–3304. http://dx.doi.org/10.1017/s0950268816001412.
Texto completo da fonteLi, Qingchu, Cuilin Li, Haoyun Li, Liu Zeng, Zhiqiang Kang, Yu Mao, Xinyue Tang et al. "STK11 rs2075604 Polymorphism Is Associated with Metformin Efficacy in Chinese Type 2 Diabetes Mellitus". International Journal of Endocrinology 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/3402808.
Texto completo da fonteSun, Chongbo, Yvette Newbatt, Leon Douglas, Paul Workman, Wynne Aherne e Spiros Linardopoulos. "High-Throughput Screening Assay for Identification of Small Molecule Inhibitors of Aurora2/STK15 Kinase". Journal of Biomolecular Screening 9, n.º 5 (agosto de 2004): 391–97. http://dx.doi.org/10.1177/1087057104264071.
Texto completo da fontePons-Tostivint, Elvire, Alexandre Lugat, Jean-François Fontenau, Marc Guillaume Denis e Jaafar Bennouna. "STK11/LKB1 Modulation of the Immune Response in Lung Cancer: From Biology to Therapeutic Impact". Cells 10, n.º 11 (11 de novembro de 2021): 3129. http://dx.doi.org/10.3390/cells10113129.
Texto completo da fontePatel, Ayushi, Soumyadip Sahu, Ke Geng, Salman Punekar, Janaye Stephens, Jiehui Deng, Ting Chen et al. "Abstract 3916: TNG260, a small molecule CoREST inhibitor, sensitizes STK11-mutant NSCLC to anti-PD1 immunotherapy". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 3916. http://dx.doi.org/10.1158/1538-7445.am2024-3916.
Texto completo da fonteHong, Runyu, Wenke Liu e David Fenyö. "Predicting and Visualizing STK11 Mutation in Lung Adenocarcinoma Histopathology Slides Using Deep Learning". BioMedInformatics 2, n.º 1 (30 de dezembro de 2021): 101–5. http://dx.doi.org/10.3390/biomedinformatics2010006.
Texto completo da fonteNourmohammadi, Bahareh, Joseph M. Amann, Rahul Shivahare, Qin Ma, Zihai Li, David P. Carbone e Jacob Kaufman. "Abstract 5088: Evaluating TNF-receptor associated factor 2 (TRAF2) as a targetable driver of immune resistance in LKB1 deficient non-small cell lung cancer". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 5088. http://dx.doi.org/10.1158/1538-7445.am2024-5088.
Texto completo da fonteSeward, David Joseph, Sean Lenahan, Allison Racela e Israel Odekunle. "Abstract 3026: STK11 negatively regulates NFKB signaling in KRAS-driven lung adenocarcinoma". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 3026. http://dx.doi.org/10.1158/1538-7445.am2024-3026.
Texto completo da fonteTavolaro, Simona, Sabina Chiaretti, Monica Messina, Francesca R. Mauro, Ilaria Del Giudice, Roberta Maggio, Emanuela M. Ghia et al. "Gene Expression Profile of Protein Kinases Reveals a Distinctive Signature of Chronic Lymphocytic Leukemia (CLL) and Points to a Role of Second Generation Protein Kinase Inhibitors." Blood 108, n.º 11 (16 de novembro de 2006): 2794. http://dx.doi.org/10.1182/blood.v108.11.2794.2794.
Texto completo da fonteWang, Junjun, Juanjuan Liu, Xinmiao Ji e Xin Zhang. "Tyr198 is the Essential Autophosphorylation Site for STK16 Localization and Kinase Activity". International Journal of Molecular Sciences 20, n.º 19 (30 de setembro de 2019): 4852. http://dx.doi.org/10.3390/ijms20194852.
Texto completo da fonteHempel, Louisa, Laura Amanda Boos, Luis Fábregas-Ibáñez, Gabriele Gut, Marta Nowak, Martin Zoche e Andreas Wicki. "Loss of heterozygosity (LOH) in KEAP1/STK11-mutated lung adenocarcinoma to characterize a new subgroup of hard-to-treat patients with unmet need in the real-world setting." Journal of Clinical Oncology 42, n.º 16_suppl (1 de junho de 2024): 8641. http://dx.doi.org/10.1200/jco.2024.42.16_suppl.8641.
Texto completo da fonteMarin-Acevedo, Julian A. A., Justin Wang Shi, Yan Han, Mya Tran, Ahmad Karkash, Weston He, Misty Dawn Shields e Nasser H. Hanna. "Outcomes in STK11-, KEAP1-, and KRAS-mutant lung squamous cell carcinoma (LSCC) with use of immune checkpoint inhibitors (ICIs)." Journal of Clinical Oncology 42, n.º 16_suppl (1 de junho de 2024): e20504-e20504. http://dx.doi.org/10.1200/jco.2024.42.16_suppl.e20504.
Texto completo da fonteSen, Utsav, e Triparna Sen. "Abstract LB014: Targeting Stearoyl-coA desaturase (SCD) as a therapeutic strategy in STK11/KEAP1 co-mutant non-small cell lung cancer". Cancer Research 83, n.º 8_Supplement (14 de abril de 2023): LB014. http://dx.doi.org/10.1158/1538-7445.am2023-lb014.
Texto completo da fonteHu, Jing, Shuang Li, Xiaozhi Sun, Zhuoqing Fang, Lina Wang, Feng Xiao, Min Shao et al. "Stk40 deletion elevates c-JUN protein level and impairs mesoderm differentiation". Journal of Biological Chemistry 294, n.º 25 (15 de maio de 2019): 9959–72. http://dx.doi.org/10.1074/jbc.ra119.007840.
Texto completo da fonteRoyer, Cole M., Lauren K. Bialek, Hailey M. Sarausky, Shannon M. Prior, Gopika Nandagopal, Paula B. Deming, David J. Seward e Melissa N. Scheiber. "Abstract 2772: Mechanisms linking STK11 loss with metastatic potential in KRAS-mutated lung adenocarcinoma". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 2772. http://dx.doi.org/10.1158/1538-7445.am2024-2772.
Texto completo da fonteMa, Hongbo, Ailian Hei, Ji Zhou, Ellen He, Sven Skog e Jin Li. "Serum thymidine kinase 1 protein concentration for predicting early progression and monitoring the response to TACE in hepatocellular carcinomas: a network meta-analysis". Future Science OA 7, n.º 7 (agosto de 2021): FSO717. http://dx.doi.org/10.2144/fsoa-2021-0016.
Texto completo da fonteLazdun, Yelena, Lydia Greenlees, Song Wu, Nicholas Holoweckyj, Fernanda Pilataxi, Susana Hayes, Brandon Higgs e Katie Streicher. "Abstract 5547: EGFR inhibition decreases immunosuppressive cytokines and reduces growth in STK11 mutant NSCLC". Cancer Research 82, n.º 12_Supplement (15 de junho de 2022): 5547. http://dx.doi.org/10.1158/1538-7445.am2022-5547.
Texto completo da fonteNishimura, Sadaaki, Masakazu Yashiro, Tomohiro Sera, Yurie Yamamoto, Yukako Kushitani, Atsushi Sugimoto, Shuhei Kushiyama et al. "Serine threonine kinase 11/liver kinase B1 mutation in sporadic scirrhous-type gastric cancer cells". Carcinogenesis 41, n.º 11 (31 de março de 2020): 1616–23. http://dx.doi.org/10.1093/carcin/bgaa031.
Texto completo da fonteRobbins, Helen L., Peter Fletcher, Joshua Savage, Manita Mehmi, Yvonne Summers, Alastair Greystoke, Noelle O’Rourke et al. "Abstract A115: mTOR targeting in STK11 deficient Non-Small Cell Lung Cancer (NSCLC): final results, pre-clinical rationale and biomarker analysis of a phase II trial of the mTORC1/2 inhibitor vistusertib in STK11 deficient lung adenocarcinoma (NLMT B2)". Molecular Cancer Therapeutics 22, n.º 12_Supplement (1 de dezembro de 2023): A115. http://dx.doi.org/10.1158/1535-7163.targ-23-a115.
Texto completo da fonteManolakos, Peter, e Linda D. Ward. "A Critical Review of the Prognostic and Predictive Implications of KRAS and STK11 Mutations and Co-Mutations in Metastatic Non-Small Lung Cancer". Journal of Personalized Medicine 13, n.º 6 (18 de junho de 2023): 1010. http://dx.doi.org/10.3390/jpm13061010.
Texto completo da fonteUba, Richie, Luis E. Raez, Katerine Dumais, Frank Gentile, Herman W. Powery, Gelenis Calzadilla Domingo, Paola Izquierdo e Brian Hunis. "Serine/threonine kinase 11 (STK11) mutations and immunotherapy resistance in patients with non-small cell lung cancer." Journal of Clinical Oncology 38, n.º 15_suppl (20 de maio de 2020): e15055-e15055. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e15055.
Texto completo da fonteNobili, Gaia, Gianfranco La Bella, Maria Grazia Basanisi, Annita Maria Damato, Rosa Coppola, Rachele Migliorelli, Valeria Rondinone, Pimlapas Leekitcharoenphon, Valeria Bortolaia e Giovanna La Salandra. "Occurrence and Characterisation of Colistin-Resistant Escherichia coli in Raw Meat in Southern Italy in 2018–2020". Microorganisms 10, n.º 9 (8 de setembro de 2022): 1805. http://dx.doi.org/10.3390/microorganisms10091805.
Texto completo da fonteDurani, Vidushi, Corrin A. Wohlhieter, Alvaro Quintanal-Villalonga, Triparna Sen, Parvathy Manoj e Charles M. Rudin. "Abstract 3000: Ferroptosis evasion as a therapeutic strategy in STK11/KEAP1 co-mutant lung adenocarcinoma". Cancer Research 82, n.º 12_Supplement (15 de junho de 2022): 3000. http://dx.doi.org/10.1158/1538-7445.am2022-3000.
Texto completo da fonteSingh, Neeraj, e Smita Agrawal. "Abstract 2546: Identifying co-mutational signatures in STK11 mutated advanced non-small cell lung cancer (aNSCLC) patients that help overcome poor response to immune checkpoint inhibitors (ICI’s)". Cancer Research 84, n.º 6_Supplement (22 de março de 2024): 2546. http://dx.doi.org/10.1158/1538-7445.am2024-2546.
Texto completo da fonteBerthelsen, Martin F., Siv L. Leknes, Maria Riedel, Mette A. Pedersen, Justin V. Joseph, Henrik Hager, Mikkel H. Vendelbo e Martin K. Thomsen. "Comparative Analysis of Stk11/Lkb1 versus Pten Deficiency in Lung Adenocarcinoma Induced by CRISPR/Cas9". Cancers 13, n.º 5 (26 de fevereiro de 2021): 974. http://dx.doi.org/10.3390/cancers13050974.
Texto completo da fonte