Literatura científica selecionada sobre o tema "Stability of hybrid systems"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Stability of hybrid systems".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Stability of hybrid systems"
LI, ZHENGGUO, CHEONG BOON SOH e XINHE XU. "Stability of hybrid dynamic systems". International Journal of Systems Science 28, n.º 8 (julho de 1997): 837–46. http://dx.doi.org/10.1080/00207729708929444.
Texto completo da fonteMartynyuk, A. A. "Practical stability of hybrid systems". Soviet Applied Mechanics 25, n.º 2 (fevereiro de 1989): 194–200. http://dx.doi.org/10.1007/bf00888136.
Texto completo da fonteBychkov, A. S., e M. G. Merkur’ev. "Stability of continuous hybrid systems". Cybernetics and Systems Analysis 43, n.º 2 (março de 2007): 261–65. http://dx.doi.org/10.1007/s10559-007-0045-7.
Texto completo da fonteLirong Huang, Xuerong Mao e Feiqi Deng. "Stability of Hybrid Stochastic Retarded Systems". IEEE Transactions on Circuits and Systems I: Regular Papers 55, n.º 11 (dezembro de 2008): 3413–20. http://dx.doi.org/10.1109/tcsi.2008.2001825.
Texto completo da fonteBiemond, J. J. Benjamin, Romain Postoyan, W. P. Maurice H. Heemels e Nathan van de Wouw. "Incremental Stability of Hybrid Dynamical Systems". IEEE Transactions on Automatic Control 63, n.º 12 (dezembro de 2018): 4094–109. http://dx.doi.org/10.1109/tac.2018.2830506.
Texto completo da fonteMinh, Vu Trieu. "Stability for switched dynamic hybrid systems". Mathematical and Computer Modelling 57, n.º 1-2 (janeiro de 2013): 78–83. http://dx.doi.org/10.1016/j.mcm.2011.05.055.
Texto completo da fonteMaria, G. A., C. Tang e J. Kim. "Hybrid transient stability analysis (power systems)". IEEE Transactions on Power Systems 5, n.º 2 (maio de 1990): 384–93. http://dx.doi.org/10.1109/59.54544.
Texto completo da fonteHui Ye, A. N. Michel e Ling Hou. "Stability theory for hybrid dynamical systems". IEEE Transactions on Automatic Control 43, n.º 4 (abril de 1998): 461–74. http://dx.doi.org/10.1109/9.664149.
Texto completo da fonteSisodiya, Priyanka, e Dr Anil Kumar Kori. "Review on Power Quality of Hybrid Renewable Energy System". International Journal for Research in Applied Science and Engineering Technology 10, n.º 7 (31 de julho de 2022): 1439–43. http://dx.doi.org/10.22214/ijraset.2022.44874.
Texto completo da fonteYang, Ying, e Guopei Chen. "Finite Time Stability of Stochastic Hybrid Systems". Abstract and Applied Analysis 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/867189.
Texto completo da fonteTeses / dissertações sobre o assunto "Stability of hybrid systems"
Karalis, Paschalis. "Stability and stabilisation of switching and hybrid dissipative systems". Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/stability-and-stabilisation-of-switching-and-hybrid-dissipative-systems(3e6ee880-e59a-49ed-a2f2-1612df85557f).html.
Texto completo da fonteDella, rossa Matteo. "Non smooth Lyapunov functions for stability analysis of hybrid systems". Thesis, Toulouse, INSA, 2020. http://www.theses.fr/2020ISAT0004.
Texto completo da fonteModeling of many phenomena in nature escape the rather common frameworks of continuous-time and discrete-time models. In fact, for many systems encountered in practice, these two paradigms need to be intrinsically related and connected, in order to reach a satisfactory level of description in modeling the considered physical/engineering process.These systems are often referred to as hybrid systems, and various possible formalisms have appeared in the literature over the past years.The aim of this thesis is to analyze the stability of particular classes of hybrid systems, by providing Lyapunov-based sufficient conditions for (asymptotic) stability. In particular, we will focus on non-differentiable locally Lipschitz candidate Lyapunov functions. The first chapters of this manuscript can be considered as a general introduction of this topic and the related concepts from non-smooth analysis.This will allow us to study a class of piecewise smooth maps as candidate Lyapunov functions, with particular attention to the continuity properties of the constrained differential inclusion comprising the studied hybrid systems. We propose ``relaxed'' Lyapunov conditions which require to be checked only on a dense set and discuss connections to other classes of locally Lipschitz or piecewise regular functions.Relaxing the continuity assumptions, we then investigate the notion of generalized derivatives when considering functions obtained as emph{max-min} combinations of smooth functions. This structure turns out to be particularly fruitful when considering the stability problem for differential inclusions arising from regularization of emph{state-dependent switched systems}.When the studied switched systems are composed of emph{linear} sub-dynamics, we refine our results, in order to propose algorithmically verifiable conditions.We further explore the utility of set-valued derivatives in establishing input-to-state stability results, in the context of perturbed differential inclusions/switched systems, using locally Lipschitz candidate Lyapunov functions. These developments are then used in analyzing the stability problem for interconnections of differential inclusion, with an application in designing an observer-based controller for state-dependent switched systems
Alwan, Mohamad. "Stability of Hybrid Singularly Perturbed Systems with Time Delay". Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2934.
Texto completo da fonteEzzine, Jelel. "On stabilization and control of hybrid systems". Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/15626.
Texto completo da fonteNersesov, Sergey G. "Nonlinear Impulsive and Hybrid Dynamical Systems". Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7147.
Texto completo da fonteAdimoolam, Santosh Arvind. "A Calculus of Complex Zonotopes for Invariance and Stability Verification of Hybrid Systems". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM027/document.
Texto completo da fonteComputing reachable sets is a de facto approach used in many formal verification methods for hybrid systems. But exact computation of the reachable set is an in- tractable problem for many kinds of hybrid systems, either due to undecidability or high computational complexity. Alternatively, quite a lot of research has been focused on using set representations that can be efficiently manipulated to com- pute sufficiently accurate over-approximation of the reachable set. Zonotopes are a useful set representation in reachability analysis because of their closure and low complexity for computing linear transformation and Minkowski sum operations. But for approximating the unbounded time reachable sets by positive invariants, zonotopes have the following drawback. The effectiveness of a set representation for computing a positive invariant depends on efficiently encoding the directions for convergence of the states to an equilibrium. In an affine hybrid system, some of the directions for convergence can be encoded by the complex valued eigen- vectors of the transformation matrices. But the zonotope representation can not exploit the complex eigenstructure of the transformation matrices because it only has real valued generators.Therefore, we extend real zonotopes to the complex valued domain in a way that can capture contraction along complex valued vectors. This yields a new set representation called complex zonotope. Geometrically, complex zonotopes repre- sent a wider class of sets that include some non-polytopic sets as well as polytopic zonotopes. They retain the merit of real zonotopes that we can efficiently perform linear transformation and Minkowski sum operations and compute the support function. Additionally, we show that they can capture contraction along complex valued eigenvectors. Furthermore, we develop computationally tractable approx- imations for inclusion-checking and intersection with half-spaces. Using these set operations on complex zonotopes, we develop convex programs to verify lin- ear invariance properties of discrete time affine hybrid systems and exponential stability of linear impulsive systems. Our experiments on some benchmark exam- ples demonstrate the efficiency of the verification techniques based on complex zonotopes
Xu, Honglei. "Stability and control of switched systems with impulsive effects". Thesis, Curtin University, 2009. http://hdl.handle.net/20.500.11937/415.
Texto completo da fonteSeyfried, Aaron W. "Stability of a Fuzzy Logic Based Piecewise Linear Hybrid System". Wright State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=wright1370017300.
Texto completo da fonteHui, Qing. "Nonlinear dynamical systems and control for large-scale, hybrid, and network systems". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24635.
Texto completo da fonteCommittee Chair: Haddad, Wassim; Committee Member: Feron, Eric; Committee Member: JVR, Prasad; Committee Member: Taylor, David; Committee Member: Tsiotras, Panagiotis
Oehlerking, Jens [Verfasser], e Oliver [Akademischer Betreuer] Theel. "Decomposition of stability proofs for hybrid systems / Jens Oehlerking. Betreuer: Oliver Theel". Oldenburg : IBIT - Universitätsbibliothek, 2012. http://d-nb.info/1025114434/34.
Texto completo da fonteLivros sobre o assunto "Stability of hybrid systems"
Goebel, Rafal. Hybrid dynamical systems: Modeling, stability, and robustness. Princeton, N.J: Princeton University Press, 2012.
Encontre o texto completo da fonteSchuring, J. Frequency response analysis of hybrid systems. Amsterdam: National Aerospace Laboratory, 1987.
Encontre o texto completo da fonteGrossman, Robert L., Anil Nerode, Anders P. Ravn e Hans Rischel, eds. Hybrid Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/3-540-57318-6.
Texto completo da fonte1957-, Grossman Robert, ed. Hybrid systems. Berlin: Springer-Verlag, 1993.
Encontre o texto completo da fonteA, Pnueli, e Sifakis J, eds. Hybrid systems. Amsterdam: Elsevier, 1995.
Encontre o texto completo da fonteHolcombe, W. M. L. Hybrid machines for hybrid systems. Sheffield: University of Sheffield, Department of Computer Science, 1995.
Encontre o texto completo da fonteMacDonald, Paul N. Two-Hybrid Systems. New Jersey: Humana Press, 2001. http://dx.doi.org/10.1385/1592592104.
Texto completo da fonteAbraham, Ajith, Thomas Hanne, Oscar Castillo, Niketa Gandhi, Tatiane Nogueira Rios e Tzung-Pei Hong, eds. Hybrid Intelligent Systems. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73050-5.
Texto completo da fonteLin, Hai, e Panos J. Antsaklis. Hybrid Dynamical Systems. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-78731-8.
Texto completo da fonteHirayama, Yoshiro, Koji Ishibashi e Kae Nemoto, eds. Hybrid Quantum Systems. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6679-7.
Texto completo da fonteCapítulos de livros sobre o assunto "Stability of hybrid systems"
Kourjanski, Mikhail, e Pravin Varaiya. "Stability of hybrid systems". In Hybrid Systems III, 413–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0020964.
Texto completo da fonteTrenn, Stephan. "Stability of Switched DAEs". In Hybrid Systems with Constraints, 57–83. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118639856.ch3.
Texto completo da fontePark, Hong Seong, Young Sin Kim, Wook Hyun Kwon e Sang Jeong Lee. "Model and stability of hybrid linear system". In Hybrid Systems III, 424–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0020965.
Texto completo da fonteDoğruel, Murat, e ümit özgüner. "Modeling and stability issues in hybrid systems". In Hybrid Systems II, 148–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/3-540-60472-3_8.
Texto completo da fonteJi, Wang, e He Weidong. "Formal specification of stability in hybrid control systems". In Hybrid Systems III, 294–303. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0020954.
Texto completo da fonteYin, G., e Q. Zhang. "Stability of Nonlinear Hybrid Systems". In New Trends in Nonlinear Dynamics and Control and their Applications, 251–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-45056-6_16.
Texto completo da fonteFiacchini, Mirko, Sophie Tarbouriech e Christophe Prieur. "Exponential Stability for Hybrid Systems with Saturations". In Hybrid Systems with Constraints, 179–212. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118639856.ch7.
Texto completo da fonteBokes, Pavol, e Abhyudai Singh. "Controlling Noisy Expression Through Auto Regulation of Burst Frequency and Protein Stability". In Hybrid Systems Biology, 80–97. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28042-0_6.
Texto completo da fonteAmes, Aaron D., Paulo Tabuada e Shankar Sastry. "On the Stability of Zeno Equilibria". In Hybrid Systems: Computation and Control, 34–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11730637_6.
Texto completo da fonteTeel, Andrew R. "Stability Theory for Hybrid Dynamical Systems". In Encyclopedia of Systems and Control, 1301–7. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-5058-9_99.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Stability of hybrid systems"
Zheng, Huannan, Wei Zhu e Ya Deng. "Stability of Nonlinear Systems via Hybrid Delayed Impulses". In 2024 43rd Chinese Control Conference (CCC), 329–34. IEEE, 2024. http://dx.doi.org/10.23919/ccc63176.2024.10662032.
Texto completo da fonteLiu, Bin, e David J. Hill. "Stability for hybrid event systems". In 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6426599.
Texto completo da fonteMohrenschildt, M. V. "Hybrid systems: solutions, stability, control". In Proceedings of 2000 American Control Conference (ACC 2000). IEEE, 2000. http://dx.doi.org/10.1109/acc.2000.878990.
Texto completo da fonteHassan, Omran,. "Local Stability of Bilinear Systems with Asynchronous Sampling". In Analysis and Design of Hybrid Systems, editado por Heemels, Maurice, chair Giua, Alessandro e Heemels, Maurice. IFAC, Elsevier, 2012. http://dx.doi.org/10.3182/20120606-3-nl-3011.00004.
Texto completo da fonteChristian, Stoecker,. "Stability Analysis of Interconnected Event-Based Control Loops". In Analysis and Design of Hybrid Systems, editado por Heemels, Maurice, chair Giua, Alessandro e Heemels, Maurice. IFAC, Elsevier, 2012. http://dx.doi.org/10.3182/20120606-3-nl-3011.00010.
Texto completo da fonteDashkovskiy, Sergey, e Ratthaprom Promkam. "Alternative stability conditions for hybrid systems". In 2013 IEEE 52nd Annual Conference on Decision and Control (CDC). IEEE, 2013. http://dx.doi.org/10.1109/cdc.2013.6760392.
Texto completo da fonteZhu, Liying, e Yuzhen Wang. "Stability of Hybrid Dissipative Hamiltonian Systems". In 2006 Chinese Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/chicc.2006.280550.
Texto completo da fonteLoon,, van. "Stability Analysis of Networked Control Systems with Periodic Protocols and Uniform Quantizers". In Analysis and Design of Hybrid Systems, editado por Heemels, Maurice, chair Giua, Alessandro e Heemels, Maurice. IFAC, Elsevier, 2012. http://dx.doi.org/10.3182/20120606-3-nl-3011.00030.
Texto completo da fonteYong-Yan Fan, Jin-Hua Wang, Jing Zhang e Chong Wang. "Relative stability analysis of two hybrid systems". In 2012 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2012. http://dx.doi.org/10.1109/icmlc.2012.6359472.
Texto completo da fonteDashkovskiy, Sergey, e Michael Kosmykov. "Stability of networks of hybrid ISS systems". In 2009 Joint 48th IEEE Conference on Decision and Control (CDC) and 28th Chinese Control Conference (CCC). IEEE, 2009. http://dx.doi.org/10.1109/cdc.2009.5400628.
Texto completo da fonteRelatórios de organizações sobre o assunto "Stability of hybrid systems"
Gao, Sicum, Soonho Kong e Edmund M. Clarke. Revisiting the Complexity of Stability of Continuous and Hybrid Systems. Fort Belvoir, VA: Defense Technical Information Center, julho de 2014. http://dx.doi.org/10.21236/ada611548.
Texto completo da fonteTeel, Andrew R., e Joao P. Hespanha. A Robust Stability and Control Theory for Hybrid Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, setembro de 2006. http://dx.doi.org/10.21236/ada470821.
Texto completo da fonteGreenwood, Michael Scott, Sacit M. Cetiner e David W. Fugate. Nuclear Hybrid Energy System Model Stability Testing. Office of Scientific and Technical Information (OSTI), abril de 2017. http://dx.doi.org/10.2172/1354665.
Texto completo da fonteHassan, Saeed, AbdulKhaliq Alshadid, Ravinder Saini e Lujain Aldosari. Assessment of Mechanical Properties of Hybrid PVES Elastomeric Material in Comparison to its Parent Materials - A Systemic Review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, março de 2023. http://dx.doi.org/10.37766/inplasy2023.3.0043.
Texto completo da fonteGoel, Dr Divanshu, e Dr Manjeet Singh. HYBRID EXTERNAL FIXATION FOR PROXIMAL TIBIAL FRACTURES. World Wide Journals, fevereiro de 2023. http://dx.doi.org/10.36106/ijar/1505336.
Texto completo da fonteKerber, Steve, Daniel Madrzykowski, James Dalton e Robert Backstrom. Improving Fire Safety by Understanding the Fire Performance of Engineered Floor Systems and Providing the Fire Service with Information for Tactical Decision Making. UL Firefighter Safety Research Institute, março de 2012. http://dx.doi.org/10.54206/102376/zcoq6988.
Texto completo da fonteHenzinger, Thomas A., e Shankar Sastry. Hybrid Systems: Computation and Control. Fort Belvoir, VA: Defense Technical Information Center, fevereiro de 1999. http://dx.doi.org/10.21236/ada361329.
Texto completo da fonteLafferriere, G., G. Pappas e S. Sastry. Hybrid Systems with Finite Bisimulations. Fort Belvoir, VA: Defense Technical Information Center, abril de 1998. http://dx.doi.org/10.21236/ada358308.
Texto completo da fonteHeitmeyer, Constance. Requirements Specifications for Hybrid Systems. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1996. http://dx.doi.org/10.21236/ada463944.
Texto completo da fonteDahleh, Munther A., e Alexandre Megretski. New Tools for Hybrid Systems. Fort Belvoir, VA: Defense Technical Information Center, maio de 2007. http://dx.doi.org/10.21236/ada467021.
Texto completo da fonte