Artigos de revistas sobre o tema "Squeezed light"

Siga este link para ver outros tipos de publicações sobre o tema: Squeezed light.

Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos

Selecione um tipo de fonte:

Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Squeezed light".

Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.

Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.

Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.

1

Slusher, Richart E., e Bernard Yurke. "Squeezed Light". Scientific American 258, n.º 5 (maio de 1988): 50–56. http://dx.doi.org/10.1038/scientificamerican0588-50.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
2

Loudon, R., e P. L. Knight. "Squeezed Light". Journal of Modern Optics 34, n.º 6-7 (junho de 1987): 709–59. http://dx.doi.org/10.1080/09500348714550721.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
3

Yurke, B., e R. E. Slusher. "Squeezed light". Optics News 13, n.º 6 (1 de junho de 1987): 6. http://dx.doi.org/10.1364/on.13.6.000006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
4

Yang, Wenhai, Wenting Diao, Chunxiao Cai, Tao Wu, Ke Wu, Yu Li, Cong Li et al. "A Bright Squeezed Light Source for Quantum Sensing". Chemosensors 11, n.º 1 (25 de dezembro de 2022): 18. http://dx.doi.org/10.3390/chemosensors11010018.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
The use of optical sensing for in vivo applications is compelling, since it offers the advantages of non-invasiveness, non-ionizing radiation, and real-time monitoring. However, the signal-to-noise ratio (SNR) of the optical signal deteriorates dramatically as the biological tissue increases. Although increasing laser power can improve the SNR, intense lasers can severely disturb biological processes and viability. Quantum sensing with bright squeezed light can make the measurement sensitivity break through the quantum noise limit under weak laser conditions. A bright squeezed light source is demonstrated to avoid the deterioration of SNR and biological damage, which integrates an external cavity frequency-doubled laser, a semi-monolithic standing cavity with periodically poled titanyl phosphate (PPKTP), and a balanced homodyne detector (BHD) assembled on a dedicated breadboard. With the rational design of the mechanical elements, the optical layout, and the feedback control equipment, a maximum non-classical noise reduction of −10.7 ± 0.2 dB is observed. The average squeeze of −10 ± 0.2 dB in continuous operation for 60 min is demonstrated. Finally, the intracavity loss of degenerate optical parametric amplifier (DOPA) and the initial bright squeezed light can be calculated to be 0.0021 and −15.5 ± 0.2 dB, respectively. Through the above experimental and theoretical analysis, the direction of improving bright squeeze level is pointed out.
5

Slusher, R. E., P. Grangier, A. LaPorta, B. Yurke e M. J. Potasek. "Pulsed Squeezed Light". Physical Review Letters 59, n.º 22 (30 de novembro de 1987): 2566–69. http://dx.doi.org/10.1103/physrevlett.59.2566.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
6

Wheeler, James T. "Gravitationally squeezed light". General Relativity and Gravitation 21, n.º 3 (março de 1989): 293–305. http://dx.doi.org/10.1007/bf00764102.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
7

Tzallas, Paraskevas. "Squeezed light effect". Nature Photonics 17, n.º 6 (junho de 2023): 463–64. http://dx.doi.org/10.1038/s41566-023-01218-9.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
8

Zhang, Yan, Juan Yu, Peng-Fei Yang e Jun-Xiang Zhang. "Preparation of continuously tunable orthogonal squeezed light filed corresponding to cesium D<sub>1</sub> line". Acta Physica Sinica 71, n.º 4 (2022): 044203. http://dx.doi.org/10.7498/aps.71.20211382.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
The non-classical light resonance on the cesium D<sub>1</sub> (894.6 nm) line has important applications in solid-state quantum information networks due to its unique advantages. The cesium D<sub>1</sub> line has a simplified hyperfine structure and can be used to realize a light-atom interface. In our previous work, we demonstrated 2.8-dB quadrature squeezed vacuum light at cesium D<sub>1</sub> line in an optical parametric oscillator(OPO) with a periodically poled KTP(PPKTP) crystal. However, the squeezing level is relatively low, and the tunability that has practical significance for squeezed light has not been further investigated. Theoretically, the increase of the transmittance of output mirror and the decrease of the intra-cavity loss of the OPO can improve the squeezing level. Here, we use super-polished and optimal coating cavity mirrors to improve the nonlinear process in OPO. We prepare 447.3 nm blue light from 894.6 nm fundamental light by a second harmonic generation cavity (SHG). The SHG is a two-mirror standing-wave cavity with a PPKTP crystal as the nonlinear medium. The power of generated blue laser is 32 mW when the incident infrared power is 120 mW. Using the blue light to pump an OPO, we achieve quadrature squeezed vacuum light at cesium D<sub>1</sub> line. The OPO is a two-mirror standing-wave cavity with a PPKTP crystal. The threshold of OPO is reduced to 28 mW. The squeezing level of generated quadrature squeezed vacuum light is increased to 3.3 dB when the pump power is 15 mW. Taking into account the overall detection efficiency, the actual squeezing reaches 5.5 dB. We inject a weak signal beam into the OPO cavity to act as an optical parametric amplifier (OPA), and test the tunability of squeezzed light. The blue light and the squeezed light are tuned by using a low-frequency triangular wave signal to scan the Ti: sapphire laser. Gradually increasing the amplitude of the scanning triangle wave signal, the generated bright squeezed light can be continuously tuned over a range around 80 MHz without losing the stability of the whole system. The generated squeezed light offers the possibility for the efficient coupling between the non-classical source and solid medium in the process of quantum interface.
9

Mehmet, Moritz, e Henning Vahlbruch. "The Squeezed Light Source for the Advanced Virgo Detector in the Observation Run O3". Galaxies 8, n.º 4 (26 de novembro de 2020): 79. http://dx.doi.org/10.3390/galaxies8040079.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
From 1 April 2019 to 27 March 2020, the Advanced Virgo detector, together with the two Advanced LIGO detectors, conducted the third joint scientific observation run O3, aiming for further detections of gravitational wave signals from astrophysical sources. One of the upgrades to the Virgo detector for O3 was the implementation of the squeezed light technology to improve the detector sensitivity beyond its classical quantum shot noise limit. In this paper, we present a detailed description of the optical setup and performance of the employed squeezed light source. The squeezer was constructed as an independent, stand-alone sub-system operated in air. The generated squeezed states are tailored to exhibit high purity at intermediate squeezing levels in order to significantly reduce the interferometer shot noise level while keeping the correlated enhancement of quantum radiation pressure noise just below the actual remaining technical noise in the Advanced Virgo detector.
10

Polzik, E. S., J. Carri e H. J. Kimble. "Spectroscopy with squeezed light". Physical Review Letters 68, n.º 20 (18 de maio de 1992): 3020–23. http://dx.doi.org/10.1103/physrevlett.68.3020.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
11

Giacobino, Elizabeth, Claude Fabre e Gerd Leuchs. "Communication by squeezed light". Physics World 2, n.º 2 (fevereiro de 1989): 31–35. http://dx.doi.org/10.1088/2058-7058/2/2/25.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
12

Teich, M. C., e B. E. A. Saleh. "Squeezed state of light". Quantum Optics: Journal of the European Optical Society Part B 1, n.º 2 (dezembro de 1989): 153–91. http://dx.doi.org/10.1088/0954-8998/1/2/006.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
13

Fabre, C. "Squeezed states of light". Physics Reports 219, n.º 3-6 (outubro de 1992): 215–25. http://dx.doi.org/10.1016/0370-1573(92)90138-p.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
14

Vaccaro, J. A., e D. T. Pegg. "Squeezed Atomic Light Amplifiers". Journal of Modern Optics 34, n.º 6-7 (junho de 1987): 855–72. http://dx.doi.org/10.1080/09500348714550791.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
15

Knight, Peter. "Squeezed and Nonclassical Light". Journal of Modern Optics 37, n.º 1 (janeiro de 1990): 145–46. http://dx.doi.org/10.1080/09500349014550141.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
16

Barnett, S. M. "Squeezed and Nonclassical Light". Journal of Modern Optics 37, n.º 5 (maio de 1990): 1005. http://dx.doi.org/10.1080/09500349014551011.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
17

TUCCI, ROBERT R. "DIFFRACTION AND SQUEEZED LIGHT". International Journal of Modern Physics B 07, n.º 26 (30 de novembro de 1993): 4403–37. http://dx.doi.org/10.1142/s0217979293003735.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
We discuss the effect of diffraction on squeezed light propagation. All electric fields concerned are approximated to be monochromatic and paraxial. We consider: (1)(propagation without gain) a squeezed signal propagating in free space, and (2)(propagation with gain) a squeezed signal propagating in a non-linear crystal which amplifies the signal by a process of frequency halving (degenerate parametric amplification). The pump beam required for this process is assumed to have a Gaussian amplitude profile. For propagation without gain, our expression for the final signal is exact, but for propagation with gain, it is given as a perturbative expansion. The lowest order term in the expansion neglects diffraction of the signal and assumes flat pump wavefronts. Higher order terms include these factors and thus improve the accuracy with which the signal’s transverse behavior is described. We present graphs showing the dependence of squeezing on pump and signal beam parameters. We also find and discuss approximate formulas that characterize these graphs in various regimes.
18

Teich, Malvin C., e Bahaa E. A. Saleh. "Squeezed and Antibunched Light". Physics Today 43, n.º 6 (junho de 1990): 26–34. http://dx.doi.org/10.1063/1.881246.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
19

Shukla, Namrata, e Ranjana Prakash. "Alteration in non-classicality of light on passing through a linear polarization beam splitter". Modern Physics Letters B 30, n.º 21 (10 de agosto de 2016): 1650289. http://dx.doi.org/10.1142/s0217984916502894.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
We observe the polarization squeezing in the mixture of a two mode squeezed vacuum and a simple coherent light through a linear polarization beam splitter. Squeezed vacuum not being squeezed in polarization, generates polarization squeezed light when superposed with coherent light. All the three Stokes parameters of the light produced on the output port of polarization beam splitter are found to be squeezed and squeezing factor also depends upon the parameters of coherent light.
20

Azuma, Hiroo. "Generation of a coherent squeezed-like state defined with the Lie–Trotter product formula using a nonlinear photonic crystal". Journal of Physics D: Applied Physics 56, n.º 47 (24 de agosto de 2023): 475101. http://dx.doi.org/10.1088/1361-6463/acefdc.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
Abstract In this paper, we investigate how to generate coherent squeezed-like light using a nonlinear photonic crystal. Because the photonic crystal reduces the group velocity of the incident light, if it is composed of a material with a second-order nonlinear optical susceptibility χ ( 2 ) , the interaction between the nonlinear material and the light passing through it strengthens and the quantum state of the emitted light is largely squeezed. Thus, we can generate a coherent squeezed-like light with a resonating cavity in which the nonlinear photonic crystal is placed. This coherent squeezed-like state is defined with the Lie–Trotter product formula and its mathematical expression is different from those of conventional coherent squeezed states. We show that we can obtain this coherent squeezed-like state with a squeezing level 15.9 dB practically by adjusting the physical parameters for our proposed method. Feeding the squeezed light whose average number of photons is given by one or two into a beam splitter and splitting the flow of the squeezed light into a pair of entangled light beams, we estimate their entanglement quantitatively. This paper is a sequel to Azuma (2022 J. Phys. D: Appl. Phys. 55 315106).
21

Aggarwal, Neha, Aranya B. Bhattacherjee e Man Mohan. "Generation of Atomic-Squeezed States via Pondermotively Squeezed Light". Journal of Atomic, Molecular, Condensate and Nano Physics 3, n.º 1 (17 de janeiro de 2016): 17–25. http://dx.doi.org/10.26713/jamcnp.v3i1.345.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
22

Lu, Bao Zhu, Si Wen Bi, Fei Feng, Meng Hua Kang e Fei Qin. "Experimental Study on the Imaging of the Squeezed State Light with -4.93dB Quantum-Noise Reduction at 1064 nm". Advanced Materials Research 571 (setembro de 2012): 439–44. http://dx.doi.org/10.4028/www.scientific.net/amr.571.439.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
A stable amplitude squeezed state light was generated by utilizing the optical parametric down-conversion (OPDC) technique based on periodically poled KTiOPO4(PPKTP) in an optical parametric oscillator (OPO) resonator. We observed a -4.93dB of squeezing in homodyne measurement. The imaging experiments of resolution target were conducted. It shown that the imaging resolution with squeezed state light as light source was 1.26 times that of the resolution with coherent light as light source. The squeezed state light was applied for imaging of real objects and we found that the imaging with squeezed light as light source is more distinct and has less distortion.
23

Fyath, Raad Sami, e Ismael Shanan Desher Alaskary. "Binary Quantum Communication using Squeezed Light: Numerical, Simulation, and Experimental Resuts". INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 11, n.º 7 (17 de novembro de 2013): 2839–58. http://dx.doi.org/10.24297/ijct.v11i7.3490.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
In this paper, the squeezed quantum state is generated using an optical parametric oscillator via a spontaneous parametric down conversion technique to investigate squeezed states with quantum noise in one quadrature below the standard quantum limit at the expense of the other. The setup involves four main parts: generation of Nd-YAG second harmonic via a ring resonator, squeezed cavity with a nonlinear crystal inside to generate the squeezed state, Pound-Drever-Hall technique to stabilize the laser in the squeezed cavity and balanced homodyne receiver with high efficiency to detect the squeezed state. A comparison in error probability is addressed between the quantum coherent classical and the quantum squeezed non-classical state in the presence of thermal noise and the dissipation. It is found that with extremely low number of photons, the squeezed state is robust against channel noise.
24

Bykov, Vladimir P. "Basic properties of squeezed light". Uspekhi Fizicheskih Nauk 161, n.º 10 (1991): 145. http://dx.doi.org/10.3367/ufnr.0161.199110f.0145.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
25

Sperling, J., e W. Vogel. "Entanglement quasiprobabilities of squeezed light". New Journal of Physics 14, n.º 5 (31 de maio de 2012): 055026. http://dx.doi.org/10.1088/1367-2630/14/5/055026.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
26

Qu, Kenan, e G. S. Agarwal. "Ramsey spectroscopy with squeezed light". Optics Letters 38, n.º 14 (12 de julho de 2013): 2563. http://dx.doi.org/10.1364/ol.38.002563.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
27

Grangier, P., R. E. Slusher, B. Yurke e A. LaPorta. "Squeezed-light–enhanced polarization interferometer". Physical Review Letters 59, n.º 19 (9 de novembro de 1987): 2153–56. http://dx.doi.org/10.1103/physrevlett.59.2153.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
28

Slusher, R. E., e B. Yurke. "Squeezed light for coherent communications". Journal of Lightwave Technology 8, n.º 3 (março de 1990): 466–77. http://dx.doi.org/10.1109/50.50742.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
29

Dalton, B. J., Z. Ficek e S. Swain. "Atoms in squeezed light fields". Journal of Modern Optics 46, n.º 3 (março de 1999): 379–474. http://dx.doi.org/10.1080/09500349908231278.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
30

Bullough, R. K. "Squeezed and non-classical light". Nature 333, n.º 6174 (junho de 1988): 601–2. http://dx.doi.org/10.1038/333601a0.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
31

Bykov, Vladimir P. "Basic properties of squeezed light". Soviet Physics Uspekhi 34, n.º 10 (31 de outubro de 1991): 910–24. http://dx.doi.org/10.1070/pu1991v034n10abeh002528.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
32

Bell, A. S., E. Riis e A. I. Ferguson. "Bright tunable ultraviolet squeezed light". Optics Letters 22, n.º 8 (15 de abril de 1997): 531. http://dx.doi.org/10.1364/ol.22.000531.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
33

Ralph, T. C., e P. K. Lam. "Teleportation with Bright Squeezed Light". Physical Review Letters 81, n.º 25 (21 de dezembro de 1998): 5668–71. http://dx.doi.org/10.1103/physrevlett.81.5668.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
34

Lawrie, B. J., P. D. Lett, A. M. Marino e R. C. Pooser. "Quantum Sensing with Squeezed Light". ACS Photonics 6, n.º 6 (13 de maio de 2019): 1307–18. http://dx.doi.org/10.1021/acsphotonics.9b00250.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
35

Li, Shiqun, e Ling-An Wu. "Phase Conjugation of Squeezed Light". Chinese Physics Letters 10, n.º 4 (abril de 1993): 220–22. http://dx.doi.org/10.1088/0256-307x/10/4/009.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
36

SLUSHER, R. E., L. W. HOLLBERG, B. YURKE, J. C. MERTZ e J. F. VALLEY. "Squeezed states of light I". Optics News 12, n.º 12 (1 de dezembro de 1986): 16. http://dx.doi.org/10.1364/on.12.12.000016.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
37

KIMBLE, H. J. "Squeezed states of light III". Optics News 12, n.º 12 (1 de dezembro de 1986): 17. http://dx.doi.org/10.1364/on.12.12.000017.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
38

KIMBLE, H. J. "Squeezed states of light III". Optics News 12, n.º 12 (1 de dezembro de 1986): 17_1. http://dx.doi.org/10.1364/on.12.12.0017_1.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
39

Powell, Devin. "Squeezed light mutes quantum noise". Nature 500, n.º 7461 (agosto de 2013): 131. http://dx.doi.org/10.1038/500131a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
40

Fox, A. M., J. J. Baumberg, M. Dabbicco, B. Huttner e J. F. Ryan. "Squeezed Light Generation in Semiconductors". Physical Review Letters 74, n.º 10 (6 de março de 1995): 1728–31. http://dx.doi.org/10.1103/physrevlett.74.1728.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
41

Patera, Giuseppe, e Mikhail I. Kolobov. "Temporal imaging with squeezed light". Optics Letters 40, n.º 6 (13 de março de 2015): 1125. http://dx.doi.org/10.1364/ol.40.001125.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
42

Böhmer, B., e U. Leonhardt. "Correlation interferometer for squeezed light". Optics Communications 118, n.º 3-4 (julho de 1995): 181–85. http://dx.doi.org/10.1016/0030-4018(95)00272-a.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
43

Bykov, V. P. "Buffer excitation of squeezed light". Laser Physics Letters 2, n.º 5 (1 de maio de 2005): 223–36. http://dx.doi.org/10.1002/lapl.200410148.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
44

Liu, Peng, Juan Li, Xiao Xiang, Ming-Tao Cao, Rui-Fang Dong, Tao Liu e Shou-Gang Zhang. "Experimental scheme of non-critical squeezed light field detection". Acta Physica Sinica 71, n.º 1 (2022): 010301. http://dx.doi.org/10.7498/aps.71.20211212.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
The squeezed state, as an important quantum resource, has great potential applications in quantum computing, quantum communication and precision measurement. In the noncritically squeezed light theory, the predicted noncritically squeezed light can be generated by breaking the spontaneous rotational symmetry occurring in a degenerate optical parametric oscillator (DOPO) pumped above threshold. The reliability of this kind of squeezing is crucially important, as its quantum performance is robust to the pump power in experiment. However, the detected squeezing degrades rapidly in detection, because the squeezed mode orientation diffuses slowly, resulting in a small mode mismatch during the homodyne detection. In this paper, we propose an experimentally feasible scheme to detect noncritically squeezing reliable by employing the spatial mode swapping technic. Theoretically, the dynamic fluctuation aroused by random mode rotation in the squeezing detection can be compensated for perfectly, and 3 dB squeezing can be achieved robustly even with additional vacuum noise. Our scheme makes an important step forward for the experimental generation of noncritically squeezed light.
45

Dwyer, S., L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai et al. "Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light". Optics Express 21, n.º 16 (2 de agosto de 2013): 19047. http://dx.doi.org/10.1364/oe.21.019047.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
46

Abebe, Tamirat, Demissie Jobir, Chimdessa Gashu e Ebisa Mosisa. "Interaction of Two-Level Atom with Squeezed Vacuum Reservoir". Advances in Mathematical Physics 2021 (29 de janeiro de 2021): 1–7. http://dx.doi.org/10.1155/2021/6696253.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
Resumo:
In this paper, the quantum properties of a two-level atom interaction with squeezed vacuum reservoir is throughly analyzed. With the aid of the interaction Hamiltonian and the master equation, we obtain the time evolution of the expectation values of the atomic operators. Employing the steady-state solution of these equations, we calculate the power spectrum and the second-order correlation function for the interaction of two-level atom with squeezed vacuum reservoir. It is found that the half width of the power spectrum of the light increases with the squeeze parameter, r . Furthermore, in the absence of decay constant and interaction time, it enhances the probability for the atom to be in the upper level.
47

Chihua Zhou, Chihua Zhou, Changchun Zhang Changchun Zhang, Hongbo Liu Hongbo Liu, Kui Liu Kui Liu, Hengxin Sun Hengxin Sun e Jiangrui Gao Jiangrui Gao. "Generation of temporal multimode squeezed states of femtosecond pulse light". Chinese Optics Letters 15, n.º 9 (2017): 092703. http://dx.doi.org/10.3788/col201715.092703.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
48

Irastorza, Igor G. "Shedding squeezed light on dark matter". Nature 590, n.º 7845 (10 de fevereiro de 2021): 226–27. http://dx.doi.org/10.1038/d41586-021-00295-6.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
49

AOKI, Takao. "Quantum Information Experiments with Squeezed Light". Review of Laser Engineering 31, n.º 9 (2003): 599–604. http://dx.doi.org/10.2184/lsj.31.599.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.
50

Vyas, Reeta, e Surendra Singh. "Quantum statistics of broadband squeezed light". Optics Letters 14, n.º 20 (15 de outubro de 1989): 1110. http://dx.doi.org/10.1364/ol.14.001110.

Texto completo da fonte
Estilos ABNT, Harvard, Vancouver, APA, etc.

Vá para a bibliografia