Literatura científica selecionada sobre o tema "Spike-and-slab priors"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Spike-and-slab priors".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Spike-and-slab priors"
Ročková, Veronika, e Edward I. George. "Negotiating multicollinearity with spike-and-slab priors". METRON 72, n.º 2 (11 de junho de 2014): 217–29. http://dx.doi.org/10.1007/s40300-014-0047-y.
Texto completo da fonteRockova, Veronika, e Kenichiro McAlinn. "Dynamic Variable Selection with Spike-and-Slab Process Priors". Bayesian Analysis 16, n.º 1 (2021): 233–69. http://dx.doi.org/10.1214/20-ba1199.
Texto completo da fonteAntonelli, Joseph, Giovanni Parmigiani e Francesca Dominici. "High-Dimensional Confounding Adjustment Using Continuous Spike and Slab Priors". Bayesian Analysis 14, n.º 3 (setembro de 2019): 805–28. http://dx.doi.org/10.1214/18-ba1131.
Texto completo da fonteHernández-Lobato, José Miguel, Daniel Hernández-Lobato e Alberto Suárez. "Expectation propagation in linear regression models with spike-and-slab priors". Machine Learning 99, n.º 3 (10 de dezembro de 2014): 437–87. http://dx.doi.org/10.1007/s10994-014-5475-7.
Texto completo da fonteScheipl, Fabian, Ludwig Fahrmeir e Thomas Kneib. "Spike-and-Slab Priors for Function Selection in Structured Additive Regression Models". Journal of the American Statistical Association 107, n.º 500 (17 de outubro de 2012): 1518–32. http://dx.doi.org/10.1080/01621459.2012.737742.
Texto completo da fonteYen, Tso-Jung. "A majorization–minimization approach to variable selection using spike and slab priors". Annals of Statistics 39, n.º 3 (junho de 2011): 1748–75. http://dx.doi.org/10.1214/11-aos884.
Texto completo da fonteKoch, Brandon, David M. Vock, Julian Wolfson e Laura Boehm Vock. "Variable selection and estimation in causal inference using Bayesian spike and slab priors". Statistical Methods in Medical Research 29, n.º 9 (15 de janeiro de 2020): 2445–69. http://dx.doi.org/10.1177/0962280219898497.
Texto completo da fonteXi, Ruibin, Yunxiao Li e Yiming Hu. "Bayesian Quantile Regression Based on the Empirical Likelihood with Spike and Slab Priors". Bayesian Analysis 11, n.º 3 (setembro de 2016): 821–55. http://dx.doi.org/10.1214/15-ba975.
Texto completo da fonteLegramanti, Sirio, Daniele Durante e David B. Dunson. "Bayesian cumulative shrinkage for infinite factorizations". Biometrika 107, n.º 3 (27 de maio de 2020): 745–52. http://dx.doi.org/10.1093/biomet/asaa008.
Texto completo da fonteYi, Jieyi, e Niansheng Tang. "Variational Bayesian Inference in High-Dimensional Linear Mixed Models". Mathematics 10, n.º 3 (31 de janeiro de 2022): 463. http://dx.doi.org/10.3390/math10030463.
Texto completo da fonteTeses / dissertações sobre o assunto "Spike-and-slab priors"
Agarwal, Anjali. "Bayesian variable selection with spike-and-slab priors". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461940937.
Texto completo da fonteNaveau, Marion. "Procédures de sélection de variables en grande dimension dans les modèles non-linéaires à effets mixtes. Application en amélioration des plantes". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM031.
Texto completo da fonteMixed-effects models analyze observations collected repeatedly from several individuals, attributing variability to different sources (intra-individual, inter-individual, residual). Accounting for this variability is essential to characterize the underlying biological mechanisms without biais. These models use covariates and random effects to describe variability among individuals: covariates explain differences due to observed characteristics, while random effects represent the variability not attributable to measured covariates. In high-dimensional context, where the number of covariates exceeds the number of individuals, identifying influential covariates is challenging, as selection focuses on latent variables in the model. Many procedures have been developed for linear mixed-effects models, but contributions for non-linear models are rare and lack theoretical foundations. This thesis aims to develop a high-dimensional covariate selection procedure for non-linear mixed-effects models by studying their practical implementations and theoretical properties. This procedure is based on the use of a gaussian spike-and-slab prior and the SAEM algorithm (Stochastic Approximation of Expectation Maximisation Algorithm). Posterior contraction rates around true parameter values in a non-linear mixed-effects model under a discrete spike-and-slab prior have been obtained, comparable to those observed in linear models. The work in this thesis is motivated by practical questions in plant breeding, where these models describe plant development as a function of their genotypes and environmental conditions. The considered covariates are generally numerous since varieties are characterized by thousands of genetic markers, most of which have no effect on certain phenotypic traits. The statistical method developed in the thesis is applied to a real dataset related to this application
Mismer, Romain. "Convergence et spike and Slab Bayesian posterior distributions in some high dimensional models". Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCC064.
Texto completo da fonteThe first main focus is the sparse Gaussian sequence model. An Empirical Bayes approach is used on the Spike and Slab prior to derive minimax convergence of the posterior second moment for Cauchy Slabs and a suboptimality result for the Laplace Slab is proved. Next, with a special choice of Slab convergence with the sharp minimax constant is derived. The second main focus is the density estimation model using a special Polya tree prior where the variables in the tree construction follow a Spike and Slab type distribution. Adaptive minimax convergence in the supremum norm of the posterior distribution as well as a nonparametric Bernstein-von Mises theorem are obtained
Sharp, Kevin John. "Effective Bayesian inference for sparse factor analysis models". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/effective-bayesian-inference-for-sparse-factor-analysis-models(4facfde0-0aae-4f09-aeaa-960111e854ff).html.
Texto completo da fonteXu, Lizhen. "Bayesian Methods for Genetic Association Studies". Thesis, 2012. http://hdl.handle.net/1807/34972.
Texto completo da fonteCapítulos de livros sobre o assunto "Spike-and-slab priors"
Vannucci, Marina. "Discrete Spike-and-Slab Priors: Models and Computational Aspects". In Handbook of Bayesian Variable Selection, 3–24. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003089018-1.
Texto completo da fonteNarisetty, Naveen N. "Theoretical and Computational Aspects of Continuous Spike-and-Slab Priors". In Handbook of Bayesian Variable Selection, 57–80. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003089018-3.
Texto completo da fonteZhou, Shuang, e Debdeep Pati. "Recent Theoretical Advances with the Discrete Spike-and-Slab Priors". In Handbook of Bayesian Variable Selection, 25–56. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003089018-2.
Texto completo da fonteWu, Shengyi, Kaito Shimamura, Kohei Yoshikawa, Kazuaki Murayama e Shuichi Kawano. "Variable Fusion for Bayesian Linear Regression via Spike-and-slab Priors". In Intelligent Decision Technologies, 491–501. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2765-1_41.
Texto completo da fonteNayek, Rajdip, Keith Worden e Elizabeth J. Cross. "Equation Discovery Using an Efficient Variational Bayesian Approach with Spike-and-Slab Priors". In Model Validation and Uncertainty Quantification, Volume 3, 149–61. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77348-9_19.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Spike-and-slab priors"
Suo, Yuanming, Minh Dao, Trac Tran, Umamahesh Srinivas e Vishal Monga. "Hierarchical sparse modeling using Spike and Slab priors". In ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013. http://dx.doi.org/10.1109/icassp.2013.6638229.
Texto completo da fonteMonga, Vishal. "Sparsity constrained estimation via spike and slab priors". In 2017 51st Annual Conference on Information Sciences and Systems (CISS). IEEE, 2017. http://dx.doi.org/10.1109/ciss.2017.7926168.
Texto completo da fonteFang, Shikai, Shandian Zhe, Kuang-chih Lee, Kai Zhang e Jennifer Neville. "Online Bayesian Sparse Learning with Spike and Slab Priors". In 2020 IEEE International Conference on Data Mining (ICDM). IEEE, 2020. http://dx.doi.org/10.1109/icdm50108.2020.00023.
Texto completo da fonteMousavi, Hojjat S., Umamahesh Srinivas, Vishal Monga, Yuanming Suo, Minh Dao e Trac D. Tran. "Multi-task image classification via collaborative, hierarchical spike-and-slab priors". In 2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2014. http://dx.doi.org/10.1109/icip.2014.7025860.
Texto completo da fonteShuku, T., e K. K. Phoon. "Bayesian Estimation for Subsurface Models using Spike-and-Slab Prior". In 8th International Symposium on Reliability Engineering and Risk Management. Singapore: Research Publishing Services, 2022. http://dx.doi.org/10.3850/978-981-18-5184-1_ms-13-045-cd.
Texto completo da fonteLiu, Yuhang, Wenyong Dong, Wanjuan Song e Lei Zhang. "Bayesian Nonnegative Matrix Factorization with a Truncated Spike-and-Slab Prior". In 2019 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2019. http://dx.doi.org/10.1109/icme.2019.00251.
Texto completo da fonteLv, Fuzai, Changhao Zhang, Zhifeng Tang e Pengfei Zhang. "Block-Sparse Signal Recovery Based on Adaptive Matching Pursuit via Spike and Slab Prior". In 2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM). IEEE, 2020. http://dx.doi.org/10.1109/sam48682.2020.9104311.
Texto completo da fonteZhang, Xiaoxu, Li Hao e Jiaqi Liu. "Spike and Slab Prior Based Joint Sparse Channel Estimation and Multiuser Detection in MTC Communications". In 2020 International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2020. http://dx.doi.org/10.1109/wcsp49889.2020.9299766.
Texto completo da fonteSun, Weitian, Lei Yang, Yuchen Dou, Xuan Li e Cheng Fang. "Auto-focused Sparse Bayesian Learning for ISAR Imagery Based on Spike-and-Slab Prior Via Variational Approximation". In 2021 International Conference on Control, Automation and Information Sciences (ICCAIS). IEEE, 2021. http://dx.doi.org/10.1109/iccais52680.2021.9624613.
Texto completo da fonte