Artigos de revistas sobre o tema "Spectroscopie du lithium"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Spectroscopie du lithium".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Hanquet, B., B. Tabyaoui, J. C. Caille, M. Farnier e R. Guilard. "Synthèse stéréosélective de (±) boschnialactone, (±) 7-épiteucriumlactone et (±) 7-épiisoiridomyrmécine. Étude de la stéréochimie par spectroscopie de résonance magnétique nucléaire". Canadian Journal of Chemistry 68, n.º 4 (1 de abril de 1990): 620–27. http://dx.doi.org/10.1139/v90-095.
Texto completo da fonteSeo, Ambrose, Andrew Meyer, Sujan Shrestha, Ming Wang, Xingcheng Xiao e Yang-Tse Cheng. "Observation of the surface layer of lithium metal using in situ spectroscopy". Applied Physics Letters 120, n.º 21 (23 de maio de 2022): 211602. http://dx.doi.org/10.1063/5.0096546.
Texto completo da fonteZhang, Li, Tao Qian, Xingyu Zhu, Zhongli Hu, Mengfan Wang, Liya Zhang, Tao Jiang, Jing-Hua Tian e Chenglin Yan. "In situ optical spectroscopy characterization for optimal design of lithium–sulfur batteries". Chemical Society Reviews 48, n.º 22 (2019): 5432–53. http://dx.doi.org/10.1039/c9cs00381a.
Texto completo da fonteMeyer, Lydia, Collin Kinder e Jason Morgan Porter. "Chemometric and Machine Learning Analysis of Lithium Concentration and Solvation Behavior in Li-Ion Battery Electrolytes". ECS Meeting Abstracts MA2022-02, n.º 6 (9 de outubro de 2022): 618. http://dx.doi.org/10.1149/ma2022-026618mtgabs.
Texto completo da fonteCai Jiahua, 才家华, 张保龙 Zhang Baolong, 耿春艳 Geng Chunyan, 郝思博 Hao Sibo, 陈赛 Chen Sai e 吴晓君 Wu Xiaojun. "铌酸锂强场太赫兹非线性时域光谱系统". Chinese Journal of Lasers 50, n.º 17 (2023): 1714012. http://dx.doi.org/10.3788/cjl230435.
Texto completo da fonteMuhammad, F. H., A. F. M. Fadzil e Tan Winie. "FTIR and Electrical Studies of Hexanoyl Chitosan-Based Nanocomposite Polymer Electrolytes". Advanced Materials Research 1043 (outubro de 2014): 36–39. http://dx.doi.org/10.4028/www.scientific.net/amr.1043.36.
Texto completo da fonteKatime-Santrich, Orlando J., Bruno V. Castilho, Carlos A. O. Torres e Germano R. Quast. "Photometric and spectroscopic analysis of the stellar association AB Doradus". Proceedings of the International Astronomical Union 5, S265 (agosto de 2009): 370–71. http://dx.doi.org/10.1017/s1743921310000979.
Texto completo da fonteFritzke, Jana Beatrice, Sunita Dey, Christopher A. O'Keefe e Clare P. Grey. "NMR Spectroscopic Investigations of the Performance Limiting Mechanisms of Lithium-Sulfur Batteries". ECS Meeting Abstracts MA2023-02, n.º 55 (22 de dezembro de 2023): 2692. http://dx.doi.org/10.1149/ma2023-02552692mtgabs.
Texto completo da fonteBezdomnikov, Alexey A., Liudmila I. Demina, Lyudmila G. Kuz’mina, Galina V. Kostikova, Valeriy I. Zhilov e Aslan Yu Tsivadze. "Study of Lithium-Extraction Systems Based on Benzo-15-Crown-5 Ether and Alkylimidazolium-Based Ionic Liquid". Molecules 28, n.º 3 (17 de janeiro de 2023): 935. http://dx.doi.org/10.3390/molecules28030935.
Texto completo da fonteJin, Yan, Lin Zhou, Jianyu Yu, Jie Liang, Wenshan Cai, Huigang Zhang, Shining Zhu e Jia Zhu. "In operando plasmonic monitoring of electrochemical evolution of lithium metal". Proceedings of the National Academy of Sciences 115, n.º 44 (15 de outubro de 2018): 11168–73. http://dx.doi.org/10.1073/pnas.1808600115.
Texto completo da fonteYildiz, Aysegul. "Phosphoinositide metabolism, lithium and manic depressive illness". Spectroscopy 16, n.º 3-4 (2002): 307–16. http://dx.doi.org/10.1155/2002/535201.
Texto completo da fonteMott, A., M. Steffen, E. Caffau e K. G. Strassmeier. "Improving spectroscopic lithium abundances". Astronomy & Astrophysics 638 (junho de 2020): A58. http://dx.doi.org/10.1051/0004-6361/201937047.
Texto completo da fontePagot, Gioele, Sara Tonello, Keti Vezzù e Vito Di Noto. "A New Glass-Forming Electrolyte Based on Lithium Glycerolate". Batteries 4, n.º 3 (1 de setembro de 2018): 41. http://dx.doi.org/10.3390/batteries4030041.
Texto completo da fonteGrünzel, Tobias, Young Joo Lee, Karsten Kuepper e Julien Bachmann. "Preparation of electrochemically active silicon nanotubes in highly ordered arrays". Beilstein Journal of Nanotechnology 4 (16 de outubro de 2013): 655–64. http://dx.doi.org/10.3762/bjnano.4.73.
Texto completo da fonteGomes, Luisa Larissa Arnaldo, Victor Sanctis, Huidong Dai e Sanjeev Mukerjee. "Shedding Light on Lithium-Sulfur Battery Dynamics: Real-Time Insights through in-Situ UV-Vis Spectroscopy on Modified Lab Equipment". ECS Meeting Abstracts MA2024-01, n.º 53 (9 de agosto de 2024): 2773. http://dx.doi.org/10.1149/ma2024-01532773mtgabs.
Texto completo da fonteHUANG Yi, 黄毅, 吴侃 WU Kan, 肖泽宇 XIAO Zeyu, 李铁映 LI Tieying, 蔡明璐 CAI Minglu e 陈建平 CHEN Jianping. "基于调制光频梳的薄膜铌酸锂波导超连续谱研究". ACTA PHOTONICA SINICA 52, n.º 5 (2023): 0552221. http://dx.doi.org/10.3788/gzxb20235205.0552221.
Texto completo da fonteReich, Hans J., e Wesley L. Whipple. "Mechanism of the lithiumiodine exchange in an iodothiophene". Canadian Journal of Chemistry 83, n.º 9 (1 de setembro de 2005): 1577–87. http://dx.doi.org/10.1139/v05-173.
Texto completo da fonteMeierl, Julia, e Ingo Krossing. "Conductivity Improvement of LiBF4 Containing Electrolyte for Enhanced Application in Lithium-Ion Batteries". ECS Meeting Abstracts MA2023-02, n.º 65 (22 de dezembro de 2023): 3081. http://dx.doi.org/10.1149/ma2023-02653081mtgabs.
Texto completo da fonteBiddinger, Elizabeth J., Michael Keating, Elijah Bernard, Sharon Lall-Ramnarine e Robert J. Messinger. "Ionic Liquid - Glyme Mixtures to Modify Solvation Chemistry, Electrochemical and Physiochemical Properties in Lithium Containing Electrolytes". ECS Meeting Abstracts MA2023-02, n.º 56 (22 de dezembro de 2023): 2728. http://dx.doi.org/10.1149/ma2023-02562728mtgabs.
Texto completo da fonteZhang, Shuoshuo, e John Thomas Sirr Irvine. "Characterisation of Molten Lithium Carbonate Corrosion on SiC Heating Elements Using Raman Spectroscopy". ECS Meeting Abstracts MA2023-02, n.º 11 (22 de dezembro de 2023): 1065. http://dx.doi.org/10.1149/ma2023-02111065mtgabs.
Texto completo da fonteBrooks, P., MJ Gallagher e A. Sarroff. "Organophosphorus Intermediates. IX. The Cleavage of α,ω-Bisdiphenylphosphinoalkanes With Lithium. A 13P N.M.R. Study". Australian Journal of Chemistry 40, n.º 8 (1987): 1341. http://dx.doi.org/10.1071/ch9871341.
Texto completo da fonteVargas-Barbosa, Nella Marie, Sebastian Puls e Henry Michael Woolley. "Hybrid Material Concepts for Thiophosphate-Based Solid-State Batteries". ECS Meeting Abstracts MA2023-01, n.º 6 (28 de agosto de 2023): 984. http://dx.doi.org/10.1149/ma2023-016984mtgabs.
Texto completo da fonteDamri, Odeya, Nofar Shemesh e Galila Agam. "Is There Justification to Treat Neurodegenerative Disorders by Repurposing Drugs? The Case of Alzheimer’s Disease, Lithium, and Autophagy". International Journal of Molecular Sciences 22, n.º 1 (27 de dezembro de 2020): 189. http://dx.doi.org/10.3390/ijms22010189.
Texto completo da fonteTezcan, Tugba, Banu Sezer, Ugur Tamer e Ismail Hakki Boyaci. "Rapid and Reliable Detection of Lithium in Water Sources Using Surface Enhanced Laser Induced Breakdown Spectroscopy (SENLIBS) on Aluminium Substrate". International Journal of Engineering and Technology 15, n.º 1 (fevereiro de 2023): 17–21. http://dx.doi.org/10.7763/ijet.2023.v15.1212.
Texto completo da fonteWu, Zhiyun, Hellmut Eckertb, Bernd D. Moselb, Manfred H. Möllera e Rainer Pöttgena. "Magnetic and Spectroscopic Properties of LiAuSn". Zeitschrift für Naturforschung B 58, n.º 6 (1 de junho de 2003): 501–4. http://dx.doi.org/10.1515/znb-2003-0602.
Texto completo da fonteAbdelghany, A. M. "Structural and physical studies of PVC/PVDF doped Nano lithium salt for electrochemical applications". JOURNAL OF ADVANCES IN PHYSICS 13, n.º 3 (29 de março de 2017): 4718–25. http://dx.doi.org/10.24297/jap.v13i3.5817.
Texto completo da fontePetrenko, E. M., e V. A. Semenova. "Diagnostics of Advanced Power Intensive Power Sources Based on the Acoustic Spectroscopy Method". Herald of the Bauman Moscow State Technical University. Series Natural Sciences, n.º 6 (99) (dezembro de 2021): 121–27. http://dx.doi.org/10.18698/1812-3368-2021-6-121-127.
Texto completo da fonteThanh Nguyen, Huynh Le. "HYDROTHERMAL SYNTHESIS OF NANO BILAYERED V2O5 AND ELECTROCHEMICAL BEHAVIOR IN NON–AQUEOUS ELECTROLYTES LiPF6 AND NaClO4". Vietnam Journal of Science and Technology 55, n.º 1B (23 de março de 2018): 24. http://dx.doi.org/10.15625/2525-2518/55/1b/12087.
Texto completo da fonteGrisoni, V., F. Matteucci, D. Romano e X. Fu. "Evolution of lithium in the Milky Way halo, discs, and bulge". Monthly Notices of the Royal Astronomical Society 489, n.º 3 (2 de setembro de 2019): 3539–46. http://dx.doi.org/10.1093/mnras/stz2428.
Texto completo da fonteM, Selvamurugan, Dhilip Kumar R, Karthikeyan C e Karuppuchamy S. "SYNTHESIS AND CHARACTERIZATION OF LITHIUM TITANATE (LTO) NANOCOMPOSITES VIA SOLUTION GROWTH ROUTE FOR Li-ION BATTERIES". Kongunadu Research Journal 4, n.º 3 (30 de dezembro de 2017): 10–13. http://dx.doi.org/10.26524/krj225.
Texto completo da fonteZhang, Ming, Yanshuo Liu, Dezhi Li, Xiaoli Cui, Licheng Wang, Liwei Li e Kai Wang. "Electrochemical Impedance Spectroscopy: A New Chapter in the Fast and Accurate Estimation of the State of Health for Lithium-Ion Batteries". Energies 16, n.º 4 (5 de fevereiro de 2023): 1599. http://dx.doi.org/10.3390/en16041599.
Texto completo da fonteFabre, Cécile, Nour Eddine Ourti, Julien Mercadier, Joana Cardoso-Fernandes, Filipa Dias, Mônica Perrotta, Friederike Koerting et al. "Analyses of Li-Rich Minerals Using Handheld LIBS Tool". Data 6, n.º 6 (21 de junho de 2021): 68. http://dx.doi.org/10.3390/data6060068.
Texto completo da fonteLiu, Xiaoming, Yan Chen, Zachary D. Hood, Cheng Ma, Seungho Yu, Asma Sharafi, Hui Wang et al. "Elucidating the mobility of H+ and Li+ ions in (Li6.25−xHxAl0.25)La3Zr2O12via correlative neutron and electron spectroscopy". Energy & Environmental Science 12, n.º 3 (2019): 945–51. http://dx.doi.org/10.1039/c8ee02981d.
Texto completo da fonteYan, T. S., J. R. Shi, L. Wang, H. L. Yan, Z. M. Zhou, Y. T. Zhou, X. S. Fang, C. Q. Li, T. Y. Chen e X. J. Xie. "Discovery of Nine Super Li-rich Unevolved Stars from the LAMOST Survey". Astrophysical Journal Letters 929, n.º 1 (1 de abril de 2022): L14. http://dx.doi.org/10.3847/2041-8213/ac63a5.
Texto completo da fonteGomes, Luisa Larissa Arnaldo, Huidong Dai, Victor Sanctis e Sanjeev Mukerjee. "Operando Raman and in-Situ UV-Vis Spectroscopy Unveil the Impact of Solvent Donor and Acceptor Numbers on Gel Polymer Electrolytes in Lithium-Sulfur Batteries". ECS Meeting Abstracts MA2024-01, n.º 2 (9 de agosto de 2024): 388. http://dx.doi.org/10.1149/ma2024-012388mtgabs.
Texto completo da fonteGherardelli, Camila, Pedro Cisternas e Nibaldo C. Inestrosa. "Lithium Enhances Hippocampal Glucose Metabolism in an In Vitro Mice Model of Alzheimer’s Disease". International Journal of Molecular Sciences 23, n.º 15 (5 de agosto de 2022): 8733. http://dx.doi.org/10.3390/ijms23158733.
Texto completo da fonteFedoseeva, Yuliya V., Elena V. Shlyakhova, Anna A. Makarova, Alexander V. Okotrub e Lyubov G. Bulusheva. "X-ray Spectroscopy Study of Defect Contribution to Lithium Adsorption on Porous Carbon". Nanomaterials 13, n.º 19 (22 de setembro de 2023): 2623. http://dx.doi.org/10.3390/nano13192623.
Texto completo da fonteAurbach, Doron, e Arie Zaban. "Impedance spectroscope of lithium electrodes". Journal of Electroanalytical Chemistry 367, n.º 1-2 (março de 1994): 15–25. http://dx.doi.org/10.1016/0022-0728(93)02998-w.
Texto completo da fonteZheng, Yijing, Lisa Pfäffl, Hans Jürgen Seifert e Wilhelm Pfleging. "Lithium Distribution in Structured Graphite Anodes Investigated by Laser-Induced Breakdown Spectroscopy". Applied Sciences 9, n.º 20 (10 de outubro de 2019): 4218. http://dx.doi.org/10.3390/app9204218.
Texto completo da fontePulst, Martin, Hossam Elgabarty, Daniel Sebastiani e Jörg Kressler. "The annular tautomerism of lithium 1,2,3-triazolate". New Journal of Chemistry 41, n.º 4 (2017): 1430–35. http://dx.doi.org/10.1039/c6nj03732a.
Texto completo da fonteRüter, Christian E., Dominik Brüske, Sergiy Suntsov e Detlef Kip. "Investigation of Ytterbium Incorporation in Lithium Niobate for Active Waveguide Devices". Applied Sciences 10, n.º 6 (24 de março de 2020): 2189. http://dx.doi.org/10.3390/app10062189.
Texto completo da fonteGnedenkov, Sergei Vasil'evich, Denis Pavlovich Opra, Sergei Leonidovich Sinebryukhov, Aleksandr Konstantinovich Tsvetnikov, Aleksandr Yur'evich Ustinov e Valentin Ivanovich Sergienko. "The lithium batteries based on the gidrolytic lignin". Electrochemical Energetics 13, n.º 1 (2013): 23–33. http://dx.doi.org/10.18500/1608-4039-2013-13-1-23-33.
Texto completo da fonteArise, Ichiro, Yuto Miyahara, Kohei Miyazaki e Takeshi Abe. "Dendrite Growth of Lithium through Separator Using In Situ Measurement Technique". Journal of The Electrochemical Society 169, n.º 2 (1 de fevereiro de 2022): 020546. http://dx.doi.org/10.1149/1945-7111/ac52c4.
Texto completo da fonteLi, Jie. "Towards Highly Efficient Lithium-Ion Batteries: Focusing on Electrolytes". Highlights in Science, Engineering and Technology 29 (31 de janeiro de 2023): 175–83. http://dx.doi.org/10.54097/hset.v29i.4553.
Texto completo da fonteNi’mah, Y. L., S. Suprapto, H. A. Putri, F. K. Rahmah e A. Hardiansyah. "THE APPLICATION OF LiMn2O4 SYNTHESIZED FROM MANGANESE ORE FOR LITHIUM- ION BATTERIES CATHODE". RASAYAN Journal of Chemistry 15, n.º 04 (2022): 2203–9. http://dx.doi.org/10.31788/rjc.2022.1546945.
Texto completo da fontePerez, Israel, Victor Sosa, Fidel Gamboa, Jose Luis Enriquez-Carrejo e Juan Carlos Mixteco Sanchez. "Role of lithium intercalation in fluorine-doped tin oxide thin films: Ab initio calculations and experiment". Journal of Chemical Physics 156, n.º 9 (7 de março de 2022): 094701. http://dx.doi.org/10.1063/5.0085531.
Texto completo da fonteMoritomo, Yutaka, Masamitsu Takachi, Yutaro Kurihara e Tomoyuki Matsuda. "Synchrotron-Radiation X-Ray Investigation of Li+/Na+Intercalation into Prussian Blue Analogues". Advances in Materials Science and Engineering 2013 (2013): 1–17. http://dx.doi.org/10.1155/2013/967285.
Texto completo da fonteCharoy, Bernard, Marc Chaussidon e Fernando Noronha. "Lithium zonation in white micas from the Argemela microgranite (central Portugal): an in-situ ion-, electron-microprobe and spectroscopic investigation". European Journal of Mineralogy 7, n.º 2 (29 de março de 1995): 335–52. http://dx.doi.org/10.1127/ejm/7/2/0335.
Texto completo da fonteBadilescu, Simona, Khalid Boufker, P. V. Ashrit, Fernand E. Girouard e Vo-Van Truong. "FT-IR/ATR Study of Lithium Intercalation into Molybdenum Oxide Thin Film". Applied Spectroscopy 47, n.º 6 (junho de 1993): 749–52. http://dx.doi.org/10.1366/0003702934066866.
Texto completo da fonteChoi, Hyun Chul, Young Mee Jung e Seung Bin Kim. "Characterization of the Electrochemical Reactions in the Li1+xV3O8/Li Cell by Soft X-ray Absorption Spectroscopy and Two-Dimensional Correlation Analysis". Applied Spectroscopy 57, n.º 8 (agosto de 2003): 984–90. http://dx.doi.org/10.1366/000370203322258959.
Texto completo da fonte