Literatura científica selecionada sobre o tema "Special cubic fourfolds"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Special cubic fourfolds".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Special cubic fourfolds"
Addington, Nicolas, e Asher Auel. "Some Non-Special Cubic Fourfolds". Documenta Mathematica 23 (2018): 637–51. http://dx.doi.org/10.4171/dm/628.
Texto completo da fonteTruong, Hoang Le, e Hoang Ngoc Yen. "A note on special cubic fourfolds of small discriminants". Forum Mathematicum 33, n.º 5 (26 de agosto de 2021): 1137–55. http://dx.doi.org/10.1515/forum-2020-0355.
Texto completo da fonteLi, Zhiyuan, e Letao Zhang. "Modular forms and special cubic fourfolds". Advances in Mathematics 245 (outubro de 2013): 315–26. http://dx.doi.org/10.1016/j.aim.2013.06.003.
Texto completo da fonteTanimoto, Sho, e Anthony Várilly-Alvarado. "Kodaira dimension of moduli of special cubic fourfolds". Journal für die reine und angewandte Mathematik (Crelles Journal) 2019, n.º 752 (1 de julho de 2019): 265–300. http://dx.doi.org/10.1515/crelle-2016-0053.
Texto completo da fonteLaterveer, Robert. "Algebraic cycles and very special cubic fourfolds". Indagationes Mathematicae 30, n.º 2 (março de 2019): 317–28. http://dx.doi.org/10.1016/j.indag.2018.12.002.
Texto completo da fontePertusi, Laura. "Fourier–Mukai partners for very general special cubic fourfolds". Mathematical Research Letters 28, n.º 1 (2021): 213–43. http://dx.doi.org/10.4310/mrl.2021.v28.n1.a9.
Texto completo da fonteBülles, Tim-Henrik. "Motives of moduli spaces on K3 surfaces and of special cubic fourfolds". manuscripta mathematica 161, n.º 1-2 (7 de novembro de 2018): 109–24. http://dx.doi.org/10.1007/s00229-018-1086-0.
Texto completo da fonteKuznetsov, Alexander, e Alexander Perry. "Derived categories of Gushel–Mukai varieties". Compositio Mathematica 154, n.º 7 (25 de maio de 2018): 1362–406. http://dx.doi.org/10.1112/s0010437x18007091.
Texto completo da fonteBayer, Arend, Martí Lahoz, Emanuele Macrì, Howard Nuer, Alexander Perry e Paolo Stellari. "Stability conditions in families". Publications mathématiques de l'IHÉS 133, n.º 1 (17 de maio de 2021): 157–325. http://dx.doi.org/10.1007/s10240-021-00124-6.
Texto completo da fontePelzl, J., e C. Dimitropoulos. "Effect of Deuteration on the Phase Transitions and on the Critical Dynamics in Ammonium Hexachlorometallates". Zeitschrift für Naturforschung A 49, n.º 1-2 (1 de fevereiro de 1994): 232–46. http://dx.doi.org/10.1515/zna-1994-1-235.
Texto completo da fonteTeses / dissertações sobre o assunto "Special cubic fourfolds"
Hernandez, Gomez Jordi Emanuel. "Transformations spéciales des quadriques". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES086.
Texto completo da fonteIn this thesis we study special self-birational transformations of smooth quadrics. We obtain a classification result in dimensions 3 and 4. In these two cases, we prove that there is only one example. In the case of dimension 3, it is given by the linear system of quadrics passing through a rational normal quartic curve. In the case of dimension 4, it is given by the linear system of cubic complexes passing through a non-minimal K3 surface of degree 10 with 2 skew (-1)-lines that is not contained in any other quadric. The base locus scheme of the inverse map is in general a smooth surface of the same type. Moreover, we prove that the corresponding pair of K3 surfaces are non-isomorphic Fourier-Mukai parters. These surfaces are also related to special cubic fourfolds. More precisely, we show that a general cubic in the Hassett divisor of special cubic fourfolds of discriminant 14 contains such a surface. This is the first example of a family of non-rational surfaces characterizing cubics in this divisor. The study of special birational transformations of quadrics is motivated by an example described by M. Bernardara, E. Fatighenti, L. Manivel, et F. Tanturri, who provided a list of 64 new families of Fano fourfolds of K3 type. Many examples in their list give varieties that admit multiple birational contractions realized as blow-ups of Fano manifolds along non-minimal K3 surfaces. The nature of the constructions implies that the corresponding K3 surfaces have equivalent derived categories. We partially answer the natural question: for which families the corresponding K3 surfaces are isomorphic, and for which families they are not?
Capítulos de livros sobre o assunto "Special cubic fourfolds"
Nuer, Howard. "Unirationality of Moduli Spaces of Special Cubic Fourfolds and K3 Surfaces". In Lecture Notes in Mathematics, 161–67. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46209-7_5.
Texto completo da fonteAuel, Asher. "Brill–Noether Special Cubic Fourfolds of Discriminant 14". In Facets of Algebraic Geometry, 29–53. Cambridge University Press, 2022. http://dx.doi.org/10.1017/9781108877831.002.
Texto completo da fonte