Literatura científica selecionada sobre o tema "Spatial transcriptomic"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Spatial transcriptomic".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Spatial transcriptomic"
Li, Youcheng, Leann Lac, Qian Liu e Pingzhao Hu. "ST-CellSeg: Cell segmentation for imaging-based spatial transcriptomics using multi-scale manifold learning". PLOS Computational Biology 20, n.º 6 (27 de junho de 2024): e1012254. http://dx.doi.org/10.1371/journal.pcbi.1012254.
Texto completo da fonteChen, Tsai-Ying, Li You, Jose Angelito U. Hardillo e Miao-Ping Chien. "Spatial Transcriptomic Technologies". Cells 12, n.º 16 (10 de agosto de 2023): 2042. http://dx.doi.org/10.3390/cells12162042.
Texto completo da fonteLv, Zhuo, Shuaijun Jiang, Shuxin Kong, Xu Zhang, Jiahui Yue, Wanqi Zhao, Long Li e Shuyan Lin. "Advances in Single-Cell Transcriptome Sequencing and Spatial Transcriptome Sequencing in Plants". Plants 13, n.º 12 (18 de junho de 2024): 1679. http://dx.doi.org/10.3390/plants13121679.
Texto completo da fonteGorbunova, Vera. "COMPARATIVE TRANSCRIPTOMIC OF LONGEVITY". Innovation in Aging 7, Supplement_1 (1 de dezembro de 2023): 432. http://dx.doi.org/10.1093/geroni/igad104.1423.
Texto completo da fonteCallaway, Edward M., Hong-Wei Dong, Joseph R. Ecker, Michael J. Hawrylycz, Z. Josh Huang, Ed S. Lein, John Ngai et al. "A multimodal cell census and atlas of the mammalian primary motor cortex". Nature 598, n.º 7879 (6 de outubro de 2021): 86–102. http://dx.doi.org/10.1038/s41586-021-03950-0.
Texto completo da fonteAdabbo, Bruno, Simona Migliozzi, Luciano Garofano, Young Taek Oh, Sakir H. Gultekin, Fulvio D'Angelo, Evan R. Roberts et al. "EPCO-27. RECONSTRUCTION OF THE SPATIAL ECOSYSTEM OF GLIOBLASTOMA REVEALS RECURRENT RELATIONSHIPS BETWEEN TUMOR CELL STATES AND TUMOR MICROENVIRONMENT". Neuro-Oncology 25, Supplement_5 (1 de novembro de 2023): v129. http://dx.doi.org/10.1093/neuonc/noad179.0490.
Texto completo da fonteHe, Jiang, Bin Wang, Justin He, Renchao Chen, Benjamin Patterson, Sudhir Tattikota, Timothy Wiggin et al. "Abstract LB333: Improved spatially resolved single-cell transcriptomic imaging in archival tissues with MERSCOPE". Cancer Research 84, n.º 7_Supplement (5 de abril de 2024): LB333. http://dx.doi.org/10.1158/1538-7445.am2024-lb333.
Texto completo da fonteJiang, Peng. "Abstract IA002: Inference of intercellular signaling activities in tumor spatial and single-cell transcriptomics, with applications in identifying cancer immunotherapy targets". Molecular Cancer Therapeutics 22, n.º 12_Supplement (1 de dezembro de 2023): IA002. http://dx.doi.org/10.1158/1535-7163.targ-23-ia002.
Texto completo da fonteAli, Abdullah Mahmood, e Azra Raza. "scRNAseq and High-Throughput Spatial Analysis of Tumor and Normal Microenvironment in Solid Tumors Reveal a Possible Origin of Circulating Tumor Hybrid Cells". Cancers 16, n.º 7 (8 de abril de 2024): 1444. http://dx.doi.org/10.3390/cancers16071444.
Texto completo da fonteHe, Jiang, Justin He, Timothy Wiggin, Rob Foreman, Renchao Chen, Nicolas Fernandez e George Emanuel. "Abstract 4195: Spatially resolved single cell transcriptomic profiling in formalin-fixed paraffin-embedded (FFPE) tissues". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 4195. http://dx.doi.org/10.1158/1538-7445.am2023-4195.
Texto completo da fonteTeses / dissertações sobre o assunto "Spatial transcriptomic"
Larsson, Ludvig. "Optimization of UMI counting strategies for Spatial Transcriptomics". Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233838.
Texto completo da fonteSpatial Transcriptomics (ST) är en teknologi som utvecklades av Ståhl och Salmén etal (2016) och som används för att analysera RNA från vävnadssnitt. Metoden användersig av ett mikrochip som kan fånga upp polyadenylerade molekyler från vävnaden med hjälp av oligo(dT)-prober som är riggade på ytan. Varje yt-prob innehåller en positionsspecifiksekvens som kan användas för att bestämma från vilken position på ytan enRNA-molekyl fångats och ger därmed en möjlighet att analysera transkriptomet överhela vävnadssnittet. Genom att kombinera denna teknologi med högupplöst ljusfältsmikroskopiär det möjligt att skapa en tvådimensionell representation av genuttrycksom direkt kan kopplas till vävnadens morfologi. På varje DNA-oligo finns förutompositions-specifika sekvenser dessutom en kortare sekvens, en så kallad UMI somanvänds för att avlägsna PCR-duplikat. Dessa sekvenser kan signifikant förbättra estimaten av genuttryck, men är känsliga för mutationer och fel som uppstår under de flertalet enzymatiska reaktioner som utnyttjas i ST-protokollet. Fel som uppstår i UMIsekvensen hanteras med data-baserade algoritmer och kräver en noggrann strategi för att generera en precis biologisk representation.I detta projekt användes ett sett av standardiserade RNA-molekyler (ERCC) samtskräddarsydda DNA-oligos som ett substitut för biologiskt material för att utvärderakällor till teknisk variation som har en direkt inverkan på estimeringen av genuttryck.Vi utvecklade även en ny strategi för att gruppera RNA-sekvenser och visar hur denna strategi producerar mer pålitliga resultat. Slutligen presenterar vi en in silico-simuleringav hela ST-metoden som kan användas som ett ramverk för att testa nya algoritmer för att kvantifiera genuttryck. Med detta ramverk utförde vi en riktmärkning av olikaalgoritmer som används för att eliminera PCR-duplikat och selekterade därefter en robust algoritm baserat på resultaten från simuleringen.Detta projekt utfördes på SciLifeLab på avdelningen för genteknologi underhandledning av José Fernandez Navarro.
Van, Leen Eric. "On the morphogenesis of the D. melanogaster pupa : a study on gene patterning and tissue folding". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS387.
Texto completo da fonteIn order to achieve complex shapes during development, multicellular organisms need to coordinate cellular behaviors to form complex and functional organs. Identifying genes that are expressed in patterns that correlate with cellular processes is therefore primordial. Using the dorsal epithelium (the notum) of drosophila pupa as a model, my thesis aimed at uncovering the molecular mechanisms which control the spatial regulation of morphogenesis at the cell and tissue scale. First, I developed spatial transcriptomics which enabled the identification of new expression patterns involved in notum morphogenesis. Second, I developed, in collaboration with the imaging platform of Institut Curie, Rotating Sample Confocal Microscopy. Using this technique, I was able to simultaneously observe the morphogenesis of the notum, hinge and wing blade. This enabled the discovery of a new morphogenetic movement in the notum between 45-50hAPF. My results suggest that this extensive folding and elongation of the notum is independent of folding in the wing. Furthermore, I demonstrated that the expression of serine proteases regulate the attachment of the tissue to the cuticle which triggers the onset of the folding and determines the final shape of the tissue. Overall, this work increases our understanding of the spatial regulation of morphogenesis and contributes to the knowledge on how the extracellular matrix can regulate tissue shape
Peiffer, Jason, Shail Kaushik, Hajime Sakai, Mario Arteaga-Vazquez, Nidia Sanchez-Leon, Hassan Ghazal, Jean Vielle-Calzada e Blake Meyers. "A spatial dissection of the Arabidopsis floral transcriptome by MPSS". BioMed Central, 2008. http://hdl.handle.net/10150/610079.
Texto completo da fonteJestin, Martin. "Modifications du microenvironnement stromal après irradiation localisée du côlon : identification de voies moléculaires pour optimiser le processus de régénération épithéliale". Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS165.pdf.
Texto completo da fontePelvic cancers are highly prevalent and are mainly treated with radiotherapy. While radiation therapy may control the tumor, it can also cause damage to surrounding healthy tissue, leading to disabling complications defined as a disease “pelvic radiation disease” (PRD). Currently, there is no curative treatment for this fibrosing pathology. The aims of this project are to study the colonic microenvironment after irradiation with a view to identify new therapeutic targets to improve the management of the colonic sequelae of PRD. For this project, a mouse model developing fibrosing colonic lesions similar to those observed in PRD patients was developed. It consists of localized colorectal irradiation with a single dose of 26Gy. We defined 2 post-irradiation study periods: 2 weeks to study the acute effects of irradiation and the regeneration process, and 12 weeks to study fibrosis. Histological studies characterized the mucosal lesions, with a deep ulcer at 2 weeks and fibrous remodeling at 12 weeks. At the 2 time points studied, an increased and disorganized proliferative process was observed, as well as a deficit in epithelial junction proteins, suggesting a defect in barrier function. We demonstrated the impact of the irradiated colonic microenvironment on epithelial proliferation and differentiation processes using a co-culture system with colonic organoids monitored by video microscopy. Our results validated in vivo observations of increased organoid proliferation in the presence of stroma derived from mice 12 weeks post-irradiation.To characterize stromal mesenchymal cells after irradiation, single-cell RNA sequencing experiments (using EpCAM-CD45-sorted colonic cells and from whole colon) and spatial transcriptomics were performed. They revealed a new marker, Edil3, specific for the major stromal population of the colon. This new marker allowed us to better characterize this cell population in terms of function and localization in the healthy colon. We proposed to call them mesitocytes. In the early stages, we found that this population could differentiate towards a pro-inflammatory profile called "IAF" for "Inflammation-Associated Fibroblasts". We also observed increased expression of transcripts involved in critical functions such as epithelial homeostasis, angiogenesis and inflammation by the majority of mesenchymal cells. The results demonstrate the importance of proliferative molecular signals from lymphatic endothelial cells and smooth muscle cells, particularly Grem-1. Analysis of the chronic phase after irradiation confirms the increase in proliferative signals from stromal cells. In addition, a new fibroblast cell type associated with fibrosis was observed, characterized by a transcriptional profile different from that of the IAF observed in the early phase. The study of the effects of irradiation on the epithelial compartment revealed significant changes in the colonocyte population and the appearance of epithelial cells with a "revival" phenotype, already described in the literature. Interestingly, these populations have specific localizations in regenerating crypts. We also established the importance of genes such as Lypd8 and Anxa1 in the progression of proliferating epithelial cells towards a "revival" phenotype. Interesting observations from spatial transcriptomic analyses also allow us to hypothesize the role of immune cells in the epithelial regeneration process
Currás, alonso Sandra. "Lung responses to radiation injury at the single cell level". Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS060.
Texto completo da fonteA major therapeutic option for lung cancer treatment is radiotherapy. Nevertheless, around 5-20% of the patients treated with radiation therapy suffer from early and late irreversible lung toxicities, such as acute pneumonitis or radiotherapy induced pulmonary fibrosis (RIPF). RIPF is characterized by progressive and irreversible destruction of the alveolar architecture with disruption of gas exchange and terminal failure. Although the order of molecular and cellular events in the progression towards RIPF is a key pathogenic aspect of the disease, their coordination in space and time remains largely unexplored. The overarching aim of this project is to study the dynamics in time and space of the cellular and molecular mechanisms that lead to lung fibrosis after ionizing radiation (IR). The combination of single cell RNA sequencing (scRNAseq) analyses, to study early and late responses to injury at the single cell level, and single molecule (sm) FISH, to map specific cell types in tissue, have provided information on how mouse and human lung tissues responds to radiation injury. The results of this project highlight the dynamics on specific radiation-induced processes, such as regeneration, transdifferentiation, EMT, inflammation and senescence in the main compartments of the lung that are known to play a major role in tissue repair, regeneration and fibrosis. Importantly, this study points at a senescence process affecting specifically the endothelial cell compartment over the course of fibrosis after fibrogenic doses of IR. Understanding what are the mechanisms causing this disease will pave the way to new therapeutic options that may improve patients’ treatments and their quality of life
Lötstedt, Britta. "Towards spatial host-microbiome profiling". Licentiate thesis, KTH, Genteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289384.
Texto completo da fonteTekniker och applikationer som använder sekvensering har flyttat fram gränsernaoch tillåtit nya undersökningar av biologiska mekanismer, evolutionära släktskap ochkommunikationsnätverk mellan celler. De tekniska utvecklingarna som har lett fram tillRNA-sekvensering av enskilda celler har möjliggjort upptäckten av sällsynta cellpopulationer medan den rumsliga upplösningen har inneburit en ökad förståelse av störrebiologiska miljöer, såsom vävnader och organ. Massively parallel sequencing har banat vägför integrerade analyser med hög kapacitet, vilket inkluderar analys av genuttryck,proteinuttryck och kartläggning av bakteriella samhällen. Den här avhandlingen börjar meden introduktion som beskriver tekniska och biologiska framsteg som gjorts de senaste åren,med fokus på den rumsliga upplösningen. Sedan följer en summering av de senasteprestationerna som har möjliggjort det pågående arbetet i ett nytt fält som avhandlarrumslig profilering av bakterien och dess värd. Slutligen innehåller slutordet både ettframtida perspektiv samt en kort reflektion av den nuvarande utvecklingen inom fälten förrumslig mång-omik. 16S-sekvensering används ofta för att taxonomiskt klassificera bakterier. Dennasekvenseringsteknik användes i artikel I för att studera mikrobiomet i luft- ochmatspjälkningskanalen hos barn med transplanterad lunga. Dessvärre är det vanligt medavstötning av lungan efter transplantationen hos många av dessa patienter, men denunderliggande orsaken till avstötningen är, i många fall, okänd. I denna studie undersöktesflertalet faktorer, inklusive mikrobiomet i luft- och matspjälkningskanalen, som kan tänkaspåverka bortstötningen. Barn med transplanterad lunga lider ofta av störningar i magtarmkanalens rörelser och artikelns fokus var därmed även att analysera förändringar imikrobiomet i relation till dessa avvikande rörelser i mag-tarmkanalen. Resultatet visade attpatienter med transplanterad lunga generellt hade lägre bakteriell mångfald i magsaft ochhals, samt att det bakteriella överlappet mellan lunga och magsaft var signifikant mindre ipatienter med transplanterad lunga jämfört med kontrollerna. För övrigt visade det sig attstörningar i mag-tarmkanalens rörelser påverkade magsaftens mikrobiom hos patientermed transplanterad lunga, men på grund av studiens storlek på urvalet, kunde det inteundersökas hur detta korrelerade till utfallet hos patienterna. Integrerad analys av transkriptomet och antikroppsbaserad analys av proteomet isamma vävnadssnitt har möjliggjorts genom metoden som utvecklats i artikel II. SpatialMulti-Omics (SM-Omics) använder ett avkodningsbart mönster av korta DNA-segment påen glasyta för att fånga mRNA och antikroppsbaserat uttryck av utvalda proteiner frånsamma vävnadssnitt. Den antikroppsbaserade profileringen av vävnadssnittet uppnåddesgenom antingen immunofluorescens eller antikroppar märkta med DNA-segment somkunde avkodas genom sekvensering. Protokollet skalades upp genom ett automatiseratsystem för att behandla vätskor. Genom användning av denna metod kunde simultanprofilering av transkriptomet och flertalet proteiner uppnås i både hjärnbarken och mjältenhos en mus. Resultaten visade en hög korrelation i det rumsliga mönstret mellangenuttrycket och de antikroppsbaserade mätningarna, oberoende av hur antikropparnahade märkts. SM-Omics genererar en storskalig karaktärisering av vävnaden av flera omikermed hög kapacitet samtidigt som den har låg teknisk variation.
QC 2021-02-02
Kaewsapsak, Pornchai. "Spatially-resolved transcriptomic mapping in live cells using peroxidase-mediated proximity biotinylation". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/113972.
Texto completo da fonteCataloged from PDF version of thesis.
Includes bibliographical references.
The spatial organization of RNA within cells is crucial for the regulation of a wide range of biological functions, spanning all kingdoms of life. However, a general understanding of RNA localization has been hindered by a lack of simple, high-throughput methods for mapping the transcriptomes of subcellular compartments. Here, we developed two methods, termed APEX-RIP and APEX-Seq. APEX-RIP combines peroxidase-catalyzed, spatially restricted in situ protein biotinylation with RNA-protein chemical crosslinking, while APEX-Seq utilizes peroxidase-catalyzed in situ biotinylation on RNA. We demonstrated that APEX-RIP can isolate RNAs from a variety of subcellular compartments, including the mitochondrial matrix, nucleus, bulk cytosol, and endoplasmic reticulum (ER) membrane, with higher specificity and coverage than conventional approaches. We furthermore identified candidate RNAs localized to mitochondria-ER junctions and nuclear lamina, two compartments that are recalcitrant to classical biochemical purification. Similarly, APEX-Seq can isolate RNAs from mitochondrial matrix, ER-associated RNAs, OMM-associated RNAs, and potentially other non-membrane bound compartments. We also revealed many non-coding RNA candidates at these sites. Since APEX-RIP and APEX-Seq are simple, versatile, and do not require special instrumentation, we envision their broad applications in a variety of biological contexts.
by Pornchai Kaewsapsak.
Ph. D.
Mignardi, Marco. "In situ Sequencing : Methods for spatially-resolved transcriptome analysis". Doctoral thesis, Stockholms universitet, Institutionen för biokemi och biofysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-110057.
Texto completo da fonteAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.
Vickovic, Sanja. "Transcriptome-wide analysis in cells and tissues". Doctoral thesis, KTH, Genteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199447.
Texto completo da fonteQC 20170109
Zhang, Yang. "A visualization interface for spatial pathway regulation data". Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-237741.
Texto completo da fonteDatavisualisering är en viktig del av bioinformatik. Spatial transkriptomik (ST) är en metod som mäter transkriptom, samtidigt som den behåller spatial information. Biologiskapathways å andrasidan fokuserar på biokemiska reaktioner som sker inom organismer. Dessa studier genererar mycket data, och denna avhandling försöker att kombinera ST-data med pathway information och få en intuitiv visualisering av det integrerade datat.I avhandlingen användes Python för att integrera datat och JavaScript bibliotek för attbygga visualiseringsverktyget. Avhandlingen resulterade i en metod för att integrera STdata och pathway information, samt ett visualiseringsverktyg för ovan nämnda information.Verktyget kan visa pathway regulationer i ST data och kan användas i moderna webbläsare.Forskningen resulterade i ett verktyg som kan hjälpa forskare att förstå ST och pathwaydata.
Livros sobre o assunto "Spatial transcriptomic"
Madan, Esha. Cutting Edge Artificial Intelligence, Spatial Transcriptomics and Proteomics Approaches to Analyze Cancer. Elsevier Science & Technology Books, 2024.
Encontre o texto completo da fonteCapítulos de livros sobre o assunto "Spatial transcriptomic"
Zhu, Qian. "A Hidden Markov Random Field Model for Detecting Domain Organizations from Spatial Transcriptomic Data". In Methods in Molecular Biology, 251–68. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9057-3_16.
Texto completo da fonteNichterwitz, Susanne, Julio Aguila Benitez, Rein Hoogstraaten, Qiaolin Deng e Eva Hedlund. "LCM-Seq: A Method for Spatial Transcriptomic Profiling Using Laser Capture Microdissection Coupled with PolyA-Based RNA Sequencing". In Methods in Molecular Biology, 95–110. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7213-5_6.
Texto completo da fonteAchim, Kaia, Hernando Martínez Vergara e Jean-Baptiste Pettit. "Spatial Transcriptomics: Constructing a Single-Cell Resolution Transcriptome-Wide Expression Atlas". In Methods in Molecular Biology, 111–25. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7213-5_7.
Texto completo da fonteRaghubar, Arti M., Joanna Crawford, Kahli Jones, Pui Y. Lam, Stacey B. Andersen, Nicholas A. Matigian, Monica S. Y. Ng, Helen Healy, Andrew J. Kassianos e Andrew J. Mallett. "Spatial Transcriptomics in Kidney Tissue". In Methods in Molecular Biology, 233–82. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3179-9_17.
Texto completo da fonteSammeth, Michael, Susann Mudra, Sina Bialdiga, Beate Hartmannsberger, Sofia Kramer e Heike Rittner. "Comparative Methods for Demystifying Spatial Transcriptomics". In Comparative Genomics, 515–46. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3838-5_17.
Texto completo da fonteCharitakis, Natalie, Mirana Ramialison e Hieu T. Nim. "Comparative Analysis of Packages and Algorithms for the Analysis of Spatially Resolved Transcriptomics Data". In Transcriptomics in Health and Disease, 165–86. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87821-4_7.
Texto completo da fonteMa, Cong, Uthsav Chitra, Shirley Zhang e Benjamin J. Raphael. "Belayer: Modeling Discrete and Continuous Spatial Variation in Gene Expression from Spatially Resolved Transcriptomics". In Lecture Notes in Computer Science, 372–73. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04749-7_33.
Texto completo da fonteRao, Bovey Y., Alexis M. Peterson, Elena K. Kandror, Stephanie Herrlinger, Attila Losonczy, Liam Paninski, Abbas H. Rizvi e Erdem Varol. "Non-parametric Vignetting Correction for Sparse Spatial Transcriptomics Images". In Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, 466–75. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87237-3_45.
Texto completo da fonteXue, Shuailin, Fangfang Zhu, Changmiao Wang e Wenwen Min. "stEnTrans: Transformer-Based Deep Learning for Spatial Transcriptomics Enhancement". In Bioinformatics Research and Applications, 63–75. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5128-0_6.
Texto completo da fonteFang, Donghai, Yichen Gao, Zhaoying Wang, Fangfang Zhu e Wenwen Min. "Contrastive Masked Graph Autoencoders for Spatial Transcriptomics Data Analysis". In Bioinformatics Research and Applications, 76–88. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-5128-0_7.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Spatial transcriptomic"
Smiljković, Lazar, Marko Mišić, Predrag Obradović e Vladimir Kovačević. "Incorporating Practical Single Cell and Spatial Transcriptomics Analysis in a Bioinformatics Course". In 2024 11th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icetran62308.2024.10645128.
Texto completo da fonteLi, Guangyuan (Frank), Amir Bayegan, Joon Sang Lee, Donald Jackson e Jack Pollard. "926 Evaluating diverse deconvolution methods for tumor spatial transcriptomic datasets". In SITC 37th Annual Meeting (SITC 2022) Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-sitc2022.0926.
Texto completo da fonteDanaher, Patrick, Emily Killingbeck, Yan Liang, Megan Vandenberg, Sarah Church, Joseph Beechem e Sangsoon Woo. "156 Spatial transcriptomic signatures of the fundamentals of immuno-oncology". In SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0156.
Texto completo da fonteKUNCHEVA, ZHANA, MICHELLE L. KRISHNAN e GIOVANNI MONTANA. "EXPLORING BRAIN TRANSCRIPTOMIC PATTERNS: A TOPOLOGICAL ANALYSIS USING SPATIAL EXPRESSION NETWORKS". In Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813207813_0008.
Texto completo da fonteSchachter, Michael, Lu Sun, Wesley Kwong, Samantha Liang, Sandra Santulli-Marotto, Lacey Kitch, Willy Hugo, Robert Prins e Dinesh Kumar. "643 Spatial-transcriptomic analysis of neoadjuvant checkpoint immunotherapy in recurrent glioblastoma". In SITC 37th Annual Meeting (SITC 2022) Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-sitc2022.0643.
Texto completo da fontePark, Wungki, Fergus Keane, Hulya Sahin Ozkan, Allison Richards, Vasilisa Rudneva, Danny Khalil, Kevin Soares et al. "115 Comprehensive spatial, transcriptomic, and genomic analysis of immunogenic biliary tract cancer". In SITC 38th Annual Meeting (SITC 2023) Abstracts. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jitc-2023-sitc2023.0115.
Texto completo da fonteJoulia, R., W. Traves, F. Puttur, L. Yates, S. Siddiqui, S. Saglani e C. Lloyd. "Investigation into the lung vasculature transcriptional signature during asthma using spatial transcriptomic". In ERS Lung Science Conference 2024 abstracts. European Respiratory Society, 2024. http://dx.doi.org/10.1183/23120541.lsc-2024.54.
Texto completo da fonteStott, Ryan, Jawad Abousoud, Stephen Williams, Shamoni Maheshwari, Valeria Giangarra, Sarah Taylor e Andrew Kohlway. "174 Single cell FFPE and spatial transcriptomic profiling of an invasive ductal carcinoma enhances cellular and spatial insights". In SITC 37th Annual Meeting (SITC 2022) Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-sitc2022.0174.
Texto completo da fonteMichelle, Naughton, Kee Rachael, McDonnell Gavin V, Howell Owain W e Fitzgerald Denise C. "Transcriptomic spatial analysis and multiplex RNAscope of meningeal and perivascular inflammation in multiple sclerosis". In Association of British Neurologists: Annual Meeting Abstracts 2023. BMJ Publishing Group Ltd, 2023. http://dx.doi.org/10.1136/jnnp-2023-abn.21.
Texto completo da fonteJustet, A., T. Adams, A. Balayev, T. Baernthaler, F. Poli, J. D. Cala Garcia, J. E. Mcdonough et al. "Spatial Transcriptomic Analysis Allow the Identification of Abnormal Airway Niches in the Fibrotic Lung". In American Thoracic Society 2023 International Conference, May 19-24, 2023 - Washington, DC. American Thoracic Society, 2023. http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a1033.
Texto completo da fonteRelatórios de organizações sobre o assunto "Spatial transcriptomic"
Brown Horowitz, Sigal, Eric L. Davis e Axel Elling. Dissecting interactions between root-knot nematode effectors and lipid signaling involved in plant defense. United States Department of Agriculture, janeiro de 2014. http://dx.doi.org/10.32747/2014.7598167.bard.
Texto completo da fonte