Literatura científica selecionada sobre o tema "Spatial scattering"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Consulte a lista de atuais artigos, livros, teses, anais de congressos e outras fontes científicas relevantes para o tema "Spatial scattering".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Artigos de revistas sobre o assunto "Spatial scattering"
Li, Qingqing, Kyeong Jin Kim, Shengzhen Ruan, Lei Yuan, Ling Yang e Jiliang Zhang. "Polarized Spatial Scattering Modulation". IEEE Communications Letters 23, n.º 12 (dezembro de 2019): 2252–56. http://dx.doi.org/10.1109/lcomm.2019.2943864.
Texto completo da fonteLi, Cai, Wenxi Cao e Yuezhong Yang. "Optical scattering property: spatial and angle variability in daya bay". Chinese Optics Letters 10, S2 (2012): S20101. http://dx.doi.org/10.3788/col201210.s20101.
Texto completo da fonteJannson, Joanna, Emil Wolf e Tomasz Jannson. "Spatial coherence discrimination in scattering". Optics Letters 13, n.º 12 (1 de dezembro de 1988): 1060. http://dx.doi.org/10.1364/ol.13.001060.
Texto completo da fonteEriksson, Ronja, Per Gren, Mikael Sjödahl e Kerstin Ramser. "Investigation of the Spatial Generation of Stimulated Raman Scattering Using Computer Simulation and Experimentation". Applied Spectroscopy 76, n.º 11 (24 de outubro de 2022): 1307–16. http://dx.doi.org/10.1177/00037028221123593.
Texto completo da fonteShinohara, Yuya, e Yoshiyuki Amemiya. "Effect of finite spatial coherence length on small-angle scattering". Journal of Applied Crystallography 48, n.º 6 (13 de outubro de 2015): 1660–64. http://dx.doi.org/10.1107/s160057671501715x.
Texto completo da fonteBian, Yaoxing, Hongyu Yuan, Junying Zhao, Dahe Liu, Wenping Gong e Zhaona Wang. "External Electric Field Tailored Spatial Coherence of Random Lasing". Crystals 12, n.º 8 (18 de agosto de 2022): 1160. http://dx.doi.org/10.3390/cryst12081160.
Texto completo da fontePierrat, Romain, Rachid Elaloufi, Jean-Jacques Greffet e Rémi Carminati. "Spatial coherence in strongly scattering media". Journal of the Optical Society of America A 22, n.º 11 (1 de novembro de 2005): 2329. http://dx.doi.org/10.1364/josaa.22.002329.
Texto completo da fonteAndreev, Anatolii V., Yu A. Il'inskiĭ e A. S. Mkoyan. "Spatial evolution of cooperative Raman scattering". Soviet Journal of Quantum Electronics 19, n.º 4 (30 de abril de 1989): 488–90. http://dx.doi.org/10.1070/qe1989v019n04abeh007901.
Texto completo da fonteDONG, GUANGJIONG. "SPATIAL TUNING OF BOSE-EINSTEIN CONDENSATIONS". International Journal of Modern Physics B 21, n.º 23n24 (30 de setembro de 2007): 4265–70. http://dx.doi.org/10.1142/s0217979207045505.
Texto completo da fonteWang, Liang, Gaokun Yu, Minshuai Liang, Yun Ren e Linhui Peng. "Experimental Measurement of Forward Scattering from Very Rough Sand Ripples in a Water Tank". Remote Sensing 14, n.º 16 (9 de agosto de 2022): 3865. http://dx.doi.org/10.3390/rs14163865.
Texto completo da fonteTeses / dissertações sobre o assunto "Spatial scattering"
Susanto, Raden Dwi 1963. "Spatial coherence and rough bottom scattering in shallow water". Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/36003.
Texto completo da fonteLim, Dong Sung. "Phase singularities and spatial-temporal complexity in optical fibres". Thesis, Heriot-Watt University, 1995. http://hdl.handle.net/10399/772.
Texto completo da fonteMorgan, Stephen P. "Continuous wave optical techniques for imaging through scattering media". Thesis, University of Nottingham, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319966.
Texto completo da fonteHirst, Edwin. "Airborne particle shape and size classification from spatial light scattering profiles". Thesis, University of Hertfordshire, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332653.
Texto completo da fonteIbison, Michael Craig. "Analytical studies of spatial and temporal confinement in stimulated Raman scattering". Thesis, University of Southampton, 1987. https://eprints.soton.ac.uk/396458/.
Texto completo da fonteIlle, Jean-Francois. "Interaction of spatial scales in acoustic radiation from hemi-capped cylinders". Thesis, Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/16091.
Texto completo da fonteBarton, John E. "Bioaerosol detection through simultaneous measurement of particle intrinsic fluorescence and spatial light scattering". Thesis, University of Hertfordshire, 2005. http://hdl.handle.net/2299/14272.
Texto completo da fonteBagschik, Kai [Verfasser], e Hans Peter [Akademischer Betreuer] Oepen. "Coherent soft X-ray magnetic scattering and spatial coherence determination / Kai Bagschik ; Betreuer: Hans Peter Oepen". Hamburg : Staats- und Universitätsbibliothek Hamburg, 2017. http://d-nb.info/1143868986/34.
Texto completo da fonteMounaix, Mickaël. "Matricial approaches for spatio-temporal control of light in multiple scattering media". Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066562/document.
Texto completo da fonteOptical imaging through highly disordered media such as biological tissue or white paint remains a challenge as spatial information gets mixed because of multiple scattering. Nonetheless, spatial light modulators (SLM) offer millions of degrees of freedom to control the spatial speckle pattern at the output of a disordered medium with wavefront shaping techniques. However, if the laser generates a broadband ultrashort pulse, the transmitted signal becomes temporally broadened as the medium responds disparately for the different spectral components of the pulse. We have developed methods to control the spatio-temporal profile of the pulse at the output of a thick scattering medium. By measuring either the Multispectral or the Time- Resolved Transmission Matrix, we can fully describe the propagation of the broadband pulse either in the spectral or temporal domain. With wavefront shaping techniques, one can control both spatial and spectral/temporal degrees of freedom with a single SLM via the spectral diversity of the scattering medium. We have demonstrated deterministic spatio-temporal focusing of an ultrashort pulse of light after the medium, with a temporal compression almost to its initial time-width in different space-time position, as well as different temporal profile such as double pulses. We exploit this spatio-temporal focusing beam to enhance a non-linear process that is two-photon excitation. It opens interesting perspectives in coherent control, light-matter interactions and multiphotonic imaging
Franchi, Gianni. "Machine learning spatial appliquée aux images multivariées et multimodales". Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM071/document.
Texto completo da fonteThis thesis focuses on multivariate spatial statistics and machine learning applied to hyperspectral and multimodal and images in remote sensing and scanning electron microscopy (SEM). In this thesis the following topics are considered:Fusion of images:SEM allows us to acquire images from a given sample using different modalities. The purpose of these studies is to analyze the interest of fusion of information to improve the multimodal SEM images acquisition. We have modeled and implemented various techniques of image fusion of information, based in particular on spatial regression theory. They have been assessed on various datasets.Spatial classification of multivariate image pixels:We have proposed a novel approach for pixel classification in multi/hyper-spectral images. The aim of this technique is to represent and efficiently describe the spatial/spectral features of multivariate images. These multi-scale deep descriptors aim at representing the content of the image while considering invariances related to the texture and to its geometric transformations.Spatial dimensionality reduction:We have developed a technique to extract a feature space using morphological principal component analysis. Indeed, in order to take into account the spatial and structural information we used mathematical morphology operators
Livros sobre o assunto "Spatial scattering"
Karlsson, E. B. Scattering by entangled spatial degrees of freedom. Chilton: Rutherford Appleton Laboratory, 2001.
Encontre o texto completo da fonteLaboratory, Wave Propagation, ed. The longitudinal-transverse spatial coherence function for a spherical wave propagating through homogeneous atmospheric turbulence: Implications for RASS. Boulder, Colo: Wave Propagation Laboratory : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1991.
Encontre o texto completo da fonteLaboratory, Wave Propagation, ed. The longitudinal-transverse spatial coherence function for a spherical wave propagating through homogeneous atmospheric turbulence: Implications for RASS. Boulder, Colo: Wave Propagation Laboratory : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1991.
Encontre o texto completo da fonteLataitis, R. J. The longitudinal-transverse spatial coherence function for a spherical wave propagating through homogeneous atmospheric turbulence: Implications for RASS. Boulder, Colo: Wave Propagation Laboratory : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1991.
Encontre o texto completo da fonteLaboratory, Wave Propagation, ed. The longitudinal-transverse spatial coherence function for a spherical wave propagating through homogeneous atmospheric turbulence: Implications for RASS. Boulder, Colo: Wave Propagation Laboratory : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1991.
Encontre o texto completo da fonteLaboratory, Wave Propagation, ed. The longitudinal-transverse spatial coherence function for a spherical wave propagating through homogeneous atmospheric turbulence: Implications for RASS. Boulder, Colo: Wave Propagation Laboratory : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1991.
Encontre o texto completo da fonteThe longitudinal-transverse spatial coherence function for a spherical wave propagating through homogeneous atmospheric turbulence: Implications for RASS. Boulder, Colo: Wave Propagation Laboratory : U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, 1991.
Encontre o texto completo da fonteHayazawa, Norihiko, e Prabhat Verma. Nanoanalysis of materials using near-field Raman spectroscopy. Editado por A. V. Narlikar e Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.10.
Texto completo da fonteFurst, Eric M., e Todd M. Squires. Interferometric tracking. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199655205.003.0006.
Texto completo da fonteHoring, Norman J. Morgenstern. Retarded Green’s Functions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0005.
Texto completo da fonteCapítulos de livros sobre o assunto "Spatial scattering"
Sheppard, Colin J. R. "Scattering and the Spatial Frequency Representation". In Nanostructure Science and Technology, 61–92. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-35659-4_3.
Texto completo da fonteAltman, C., e K. Suchy. "Generalization of the scattering theorem". In Reciprocity, Spatial Mapping and Time Reversal in Electromagnetics, 83–113. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1530-1_3.
Texto completo da fonteAltman, C., e K. Suchy. "Generalization of the scattering theorem". In Reciprocity, Spatial Mapping and Time Reversal in Electromagnetics, 90–121. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-015-7915-5_4.
Texto completo da fonteHuebener, R. P., E. Held, W. Klein e W. Metzger. "Imaging of Spatial Structures with Ballistic Phonons". In Phonon Scattering in Condensed Matter V, 305–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82912-3_88.
Texto completo da fonteKuo, S. J., e M. G. Raymer. "Spatial Quantum Fluctuations in Stimulated Raman Scattering". In Coherence and Quantum Optics VI, 627–30. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0847-8_115.
Texto completo da fonteAltman, C., e K. Suchy. "From scattering theorem to Lorentz reciprocity". In Reciprocity, Spatial Mapping and Time Reversal in Electromagnetics, 151–74. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1530-1_5.
Texto completo da fonteAltman, C., e K. Suchy. "From scattering theorem to Lorentz reciprocity". In Reciprocity, Spatial Mapping and Time Reversal in Electromagnetics, 160–84. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-015-7915-5_6.
Texto completo da fonteGeernaert, Gerald L. "Temporal and Spatial Variability of the Wind Stress Vector". In Radar Scattering from Modulated Wind Waves, 89–104. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2309-6_9.
Texto completo da fonteThompson, A. Richard, James M. Moran e George W. Swenson. "Van Cittert–Zernike Theorem, Spatial Coherence, and Scattering". In Astronomy and Astrophysics Library, 767–86. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44431-4_15.
Texto completo da fonteBertolotti, M., M. Angelis, C. Sibilia e R. Horak. "Spatial Photon Correlation and Statistics of Nonlinear Processes in Nonlinear Waveguides". In Light Scattering and Photon Correlation Spectroscopy, 231–46. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5586-1_19.
Texto completo da fonteTrabalhos de conferências sobre o assunto "Spatial scattering"
Baboiu, D. M., R. Fuerst, B. Lawrence, W. E. Torruellas e G. I. Stegeman. "Spatial Modulational Instability in a Quadratic Medium: Theory and Experiment". In Photon Correlation and Scattering. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/pcs.1996.sub.1.
Texto completo da fonteVicari, L. "Dielectric Behavior Of Polymer Dispersed Liquid Crystals". In Spatial Light Modulators. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/slmo.1997.stue.1.
Texto completo da fonteZachhuber, Bernhard, Christoph Gasser, Engelene t. H. Chrysostom e Bernhard Lendl. "Stand-off Spatial Offset Raman Scattering". In Laser Applications to Chemical, Security and Environmental Analysis. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/lacsea.2012.lt2b.4.
Texto completo da fonteTeo, T. J., e J. M. Reid. "Spatial/Frequency Diversity in Inverse Scattering". In IEEE 1985 Ultrasonics Symposium. IEEE, 1985. http://dx.doi.org/10.1109/ultsym.1985.198621.
Texto completo da fonteYang, ChunPing, Jian Wu, Yong Han, XiuLan He e Jie Leng. "On the approximate model of scattering radiance for cloudless sky". In Second International Conference on Spatial Information Technology, editado por Cheng Wang, Shan Zhong e Jiaolong Wei. SPIE, 2007. http://dx.doi.org/10.1117/12.773441.
Texto completo da fonteBristow, Thomas C. "Surface Measurements and Frequency Analysis". In Surface Roughness and Scattering. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/surs.1992.smb2.
Texto completo da fonteYang, Jin, Dong-mei Yan, Chao Wang e Hong Zhang. "Feature extraction of attributed scattering centers on high resolution SAR imagery". In Second International Conference on Spatial Information Technology, editado por Cheng Wang, Shan Zhong e Jiaolong Wei. SPIE, 2007. http://dx.doi.org/10.1117/12.773984.
Texto completo da fonteZhang, Lai, Alistair D. Bounds, James P. Fleming e John M. Girkin. "Monitoring of surgical wound healing using spatial frequency domain imaging". In Biomedical Applications of Light Scattering XII, editado por Adam Wax e Vadim Backman. SPIE, 2022. http://dx.doi.org/10.1117/12.2608558.
Texto completo da fonteChen, Ping, Xing Cai, Jianxin Han e Tianlin Dong. "A simplified method for electromagnetic scattering from periodic surface of lossy media". In Second International Conference on Spatial Information Technology, editado por Cheng Wang, Shan Zhong e Jiaolong Wei. SPIE, 2007. http://dx.doi.org/10.1117/12.774005.
Texto completo da fonteHuo, Chaoying, Zhihe Xiao, Hongmei Ren e Hongcheng Yin. "Quasi-dynamic electromagnetic scattering characteristic simulation and analysis of space satellite targets". In Second International Conference on Spatial Information Technology, editado por Cheng Wang, Shan Zhong e Jiaolong Wei. SPIE, 2007. http://dx.doi.org/10.1117/12.774186.
Texto completo da fonteRelatórios de organizações sobre o assunto "Spatial scattering"
Cable, J. (Neutron scattering studies of spatial correlations in Fe-V and Fe-Cr alloys). Office of Scientific and Technical Information (OSTI), maio de 1990. http://dx.doi.org/10.2172/6979180.
Texto completo da fonteBrower, K. L. Apparent spatial blurring and displacement of a point optical source due to cloud scattering. Office of Scientific and Technical Information (OSTI), setembro de 1997. http://dx.doi.org/10.2172/534517.
Texto completo da fonteWilson, D., Vladimir Ostashev e Max Krackow. Phase-modulated Rice model for statistical distributions of complex signals. Engineer Research and Development Center (U.S.), agosto de 2023. http://dx.doi.org/10.21079/11681/47379.
Texto completo da fonteToncy, Michael F., Joseph G. Cordon, Mahesh G. Samant, Gary L. Borges e Larry B. Sorensen. Surface X-Ray Scattering Measurements of the Substrate Induced Spatial Modulation of an Incommensurate Adsorbed Monolayer. Fort Belvoir, VA: Defense Technical Information Center, janeiro de 1991. http://dx.doi.org/10.21236/ada232625.
Texto completo da fonteHayward, Jason, e Michael Moore. Neutron Scattering Instrumentation Research and Development for High Spatial and Temporal Resolution Imaging at Oak Ridge National Laboratory. Office of Scientific and Technical Information (OSTI), outubro de 2019. http://dx.doi.org/10.2172/1601767.
Texto completo da fonteDasberg, Shmuel, Jan W. Hopmans, Larry J. Schwankl e Dani Or. Drip Irrigation Management by TDR Monitoring of Soil Water and Solute Distribution. United States Department of Agriculture, agosto de 1993. http://dx.doi.org/10.32747/1993.7568095.bard.
Texto completo da fonte