Artigos de revistas sobre o tema "Sparse Reward"
Crie uma referência precisa em APA, MLA, Chicago, Harvard, e outros estilos
Veja os 50 melhores artigos de revistas para estudos sobre o assunto "Sparse Reward".
Ao lado de cada fonte na lista de referências, há um botão "Adicionar à bibliografia". Clique e geraremos automaticamente a citação bibliográfica do trabalho escolhido no estilo de citação de que você precisa: APA, MLA, Harvard, Chicago, Vancouver, etc.
Você também pode baixar o texto completo da publicação científica em formato .pdf e ler o resumo do trabalho online se estiver presente nos metadados.
Veja os artigos de revistas das mais diversas áreas científicas e compile uma bibliografia correta.
Park, Junseok, Yoonsung Kim, Hee bin Yoo, Min Whoo Lee, Kibeom Kim, Won-Seok Choi, Minsu Lee e Byoung-Tak Zhang. "Unveiling the Significance of Toddler-Inspired Reward Transition in Goal-Oriented Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 1 (24 de março de 2024): 592–600. http://dx.doi.org/10.1609/aaai.v38i1.27815.
Texto completo da fonteXu, Pei, Junge Zhang, Qiyue Yin, Chao Yu, Yaodong Yang e Kaiqi Huang. "Subspace-Aware Exploration for Sparse-Reward Multi-Agent Tasks". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 10 (26 de junho de 2023): 11717–25. http://dx.doi.org/10.1609/aaai.v37i10.26384.
Texto completo da fonteMguni, David, Taher Jafferjee, Jianhong Wang, Nicolas Perez-Nieves, Wenbin Song, Feifei Tong, Matthew Taylor et al. "Learning to Shape Rewards Using a Game of Two Partners". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 10 (26 de junho de 2023): 11604–12. http://dx.doi.org/10.1609/aaai.v37i10.26371.
Texto completo da fonteMeng, Fanxiao. "Research on Multi-agent Sparse Reward Problem". Highlights in Science, Engineering and Technology 85 (13 de março de 2024): 96–103. http://dx.doi.org/10.54097/er0mx710.
Texto completo da fonteZuo, Guoyu, Qishen Zhao, Jiahao Lu e Jiangeng Li. "Efficient hindsight reinforcement learning using demonstrations for robotic tasks with sparse rewards". International Journal of Advanced Robotic Systems 17, n.º 1 (1 de janeiro de 2020): 172988141989834. http://dx.doi.org/10.1177/1729881419898342.
Texto completo da fonteVelasquez, Alvaro, Brett Bissey, Lior Barak, Andre Beckus, Ismail Alkhouri, Daniel Melcer e George Atia. "Dynamic Automaton-Guided Reward Shaping for Monte Carlo Tree Search". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 13 (18 de maio de 2021): 12015–23. http://dx.doi.org/10.1609/aaai.v35i13.17427.
Texto completo da fonteCorazza, Jan, Ivan Gavran e Daniel Neider. "Reinforcement Learning with Stochastic Reward Machines". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 6 (28 de junho de 2022): 6429–36. http://dx.doi.org/10.1609/aaai.v36i6.20594.
Texto completo da fonteGaina, Raluca D., Simon M. Lucas e Diego Pérez-Liébana. "Tackling Sparse Rewards in Real-Time Games with Statistical Forward Planning Methods". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julho de 2019): 1691–98. http://dx.doi.org/10.1609/aaai.v33i01.33011691.
Texto completo da fonteZhou, Xiao, Song Zhou, Xingang Mou e Yi He. "Multirobot Collaborative Pursuit Target Robot by Improved MADDPG". Computational Intelligence and Neuroscience 2022 (25 de fevereiro de 2022): 1–10. http://dx.doi.org/10.1155/2022/4757394.
Texto completo da fonteJiang, Jiechuan, e Zongqing Lu. "Generative Exploration and Exploitation". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 4337–44. http://dx.doi.org/10.1609/aaai.v34i04.5858.
Texto completo da fonteYan Kong, Yan Kong, Yefeng Rui Yan Kong e Chih-Hsien Hsia Yefeng Rui. "A Deep Reinforcement Learning-Based Approach in Porker Game". 電腦學刊 34, n.º 2 (abril de 2023): 041–51. http://dx.doi.org/10.53106/199115992023043402004.
Texto completo da fonteDann, Michael, Fabio Zambetta e John Thangarajah. "Deriving Subgoals Autonomously to Accelerate Learning in Sparse Reward Domains". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julho de 2019): 881–89. http://dx.doi.org/10.1609/aaai.v33i01.3301881.
Texto completo da fonteBougie, Nicolas, e Ryutaro Ichise. "Skill-based curiosity for intrinsically motivated reinforcement learning". Machine Learning 109, n.º 3 (10 de outubro de 2019): 493–512. http://dx.doi.org/10.1007/s10994-019-05845-8.
Texto completo da fonteCatacora Ocana, Jim Martin, Roberto Capobianco e Daniele Nardi. "An Overview of Environmental Features that Impact Deep Reinforcement Learning in Sparse-Reward Domains". Journal of Artificial Intelligence Research 76 (26 de abril de 2023): 1181–218. http://dx.doi.org/10.1613/jair.1.14390.
Texto completo da fonteZhu, Yiwen, Yuan Zheng, Wenya Wei e Zhou Fang. "Enhancing Automated Maneuvering Decisions in UCAV Air Combat Games Using Homotopy-Based Reinforcement Learning". Drones 8, n.º 12 (13 de dezembro de 2024): 756. https://doi.org/10.3390/drones8120756.
Texto completo da fonteGehring, Clement, Masataro Asai, Rohan Chitnis, Tom Silver, Leslie Kaelbling, Shirin Sohrabi e Michael Katz. "Reinforcement Learning for Classical Planning: Viewing Heuristics as Dense Reward Generators". Proceedings of the International Conference on Automated Planning and Scheduling 32 (13 de junho de 2022): 588–96. http://dx.doi.org/10.1609/icaps.v32i1.19846.
Texto completo da fonteXu, Zhe, Ivan Gavran, Yousef Ahmad, Rupak Majumdar, Daniel Neider, Ufuk Topcu e Bo Wu. "Joint Inference of Reward Machines and Policies for Reinforcement Learning". Proceedings of the International Conference on Automated Planning and Scheduling 30 (1 de junho de 2020): 590–98. http://dx.doi.org/10.1609/icaps.v30i1.6756.
Texto completo da fonteYe, Chenhao, Wei Zhu, Shiluo Guo e Jinyin Bai. "DQN-Based Shaped Reward Function Mold for UAV Emergency Communication". Applied Sciences 14, n.º 22 (14 de novembro de 2024): 10496. http://dx.doi.org/10.3390/app142210496.
Texto completo da fonteDharmavaram, Akshay, Matthew Riemer e Shalabh Bhatnagar. "Hierarchical Average Reward Policy Gradient Algorithms (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 10 (3 de abril de 2020): 13777–78. http://dx.doi.org/10.1609/aaai.v34i10.7160.
Texto completo da fonteAbu Bakar, Mohamad Hafiz, Abu Ubaidah Shamsudin, Zubair Adil Soomro, Satoshi Tadokoro e C. J. Salaan. "FUSION SPARSE AND SHAPING REWARD FUNCTION IN SOFT ACTOR-CRITIC DEEP REINFORCEMENT LEARNING FOR MOBILE ROBOT NAVIGATION". Jurnal Teknologi 86, n.º 2 (15 de janeiro de 2024): 37–49. http://dx.doi.org/10.11113/jurnalteknologi.v86.20147.
Texto completo da fonteSharip, Zati, Mohd Hafiz Zulkifli, Mohd Nur Farhan Abd Wahab, Zubaidi Johar e Mohd Zaki Mat Amin. "ASSESSING TROPHIC STATE AND WATER QUALITY OF SMALL LAKES AND PONDS IN PERAK". Jurnal Teknologi 86, n.º 2 (15 de janeiro de 2024): 51–59. http://dx.doi.org/10.11113/jurnalteknologi.v86.20566.
Texto completo da fonteParisi, Simone, Davide Tateo, Maximilian Hensel, Carlo D’Eramo, Jan Peters e Joni Pajarinen. "Long-Term Visitation Value for Deep Exploration in Sparse-Reward Reinforcement Learning". Algorithms 15, n.º 3 (28 de fevereiro de 2022): 81. http://dx.doi.org/10.3390/a15030081.
Texto completo da fonteForbes, Grant C., e David L. Roberts. "Potential-Based Reward Shaping for Intrinsic Motivation (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 21 (24 de março de 2024): 23488–89. http://dx.doi.org/10.1609/aaai.v38i21.30441.
Texto completo da fonteGuo, Yijie, Qiucheng Wu e Honglak Lee. "Learning Action Translator for Meta Reinforcement Learning on Sparse-Reward Tasks". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 6 (28 de junho de 2022): 6792–800. http://dx.doi.org/10.1609/aaai.v36i6.20635.
Texto completo da fonteBooth, Serena, W. Bradley Knox, Julie Shah, Scott Niekum, Peter Stone e Alessandro Allievi. "The Perils of Trial-and-Error Reward Design: Misdesign through Overfitting and Invalid Task Specifications". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 5 (26 de junho de 2023): 5920–29. http://dx.doi.org/10.1609/aaai.v37i5.25733.
Texto completo da fonteLinke, Cam, Nadia M. Ady, Martha White, Thomas Degris e Adam White. "Adapting Behavior via Intrinsic Reward: A Survey and Empirical Study". Journal of Artificial Intelligence Research 69 (14 de dezembro de 2020): 1287–332. http://dx.doi.org/10.1613/jair.1.12087.
Texto completo da fonteVelasquez, Alvaro, Brett Bissey, Lior Barak, Daniel Melcer, Andre Beckus, Ismail Alkhouri e George Atia. "Multi-Agent Tree Search with Dynamic Reward Shaping". Proceedings of the International Conference on Automated Planning and Scheduling 32 (13 de junho de 2022): 652–61. http://dx.doi.org/10.1609/icaps.v32i1.19854.
Texto completo da fonteSorg, Jonathan, Satinder Singh e Richard Lewis. "Optimal Rewards versus Leaf-Evaluation Heuristics in Planning Agents". Proceedings of the AAAI Conference on Artificial Intelligence 25, n.º 1 (4 de agosto de 2011): 465–70. http://dx.doi.org/10.1609/aaai.v25i1.7931.
Texto completo da fonteYin, Haiyan, Jianda Chen, Sinno Jialin Pan e Sebastian Tschiatschek. "Sequential Generative Exploration Model for Partially Observable Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 12 (18 de maio de 2021): 10700–10708. http://dx.doi.org/10.1609/aaai.v35i12.17279.
Texto completo da fonteHasanbeig, Mohammadhosein, Natasha Yogananda Jeppu, Alessandro Abate, Tom Melham e Daniel Kroening. "DeepSynth: Automata Synthesis for Automatic Task Segmentation in Deep Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 9 (18 de maio de 2021): 7647–56. http://dx.doi.org/10.1609/aaai.v35i9.16935.
Texto completo da fonteHasanbeig, Hosein, Natasha Yogananda Jeppu, Alessandro Abate, Tom Melham e Daniel Kroening. "Symbolic Task Inference in Deep Reinforcement Learning". Journal of Artificial Intelligence Research 80 (23 de julho de 2024): 1099–137. http://dx.doi.org/10.1613/jair.1.14063.
Texto completo da fonteJiang, Nan, Sheng Jin e Changshui Zhang. "Hierarchical automatic curriculum learning: Converting a sparse reward navigation task into dense reward". Neurocomputing 360 (setembro de 2019): 265–78. http://dx.doi.org/10.1016/j.neucom.2019.06.024.
Texto completo da fonteJin, Tianyuan, Hao-Lun Hsu, William Chang e Pan Xu. "Finite-Time Frequentist Regret Bounds of Multi-Agent Thompson Sampling on Sparse Hypergraphs". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 11 (24 de março de 2024): 12956–64. http://dx.doi.org/10.1609/aaai.v38i11.29193.
Texto completo da fonteMa, Ang, Yanhua Yu, Chuan Shi, Shuai Zhen, Liang Pang e Tat-Seng Chua. "PMHR: Path-Based Multi-Hop Reasoning Incorporating Rule-Enhanced Reinforcement Learning and KG Embeddings". Electronics 13, n.º 23 (9 de dezembro de 2024): 4847. https://doi.org/10.3390/electronics13234847.
Texto completo da fonteWei, Tianqi, Qinghai Guo e Barbara Webb. "Learning with sparse reward in a gap junction network inspired by the insect mushroom body". PLOS Computational Biology 20, n.º 5 (23 de maio de 2024): e1012086. http://dx.doi.org/10.1371/journal.pcbi.1012086.
Texto completo da fonteKang, Yongxin, Enmin Zhao, Kai Li e Junliang Xing. "Exploration via State influence Modeling". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 9 (18 de maio de 2021): 8047–54. http://dx.doi.org/10.1609/aaai.v35i9.16981.
Texto completo da fonteSakamoto, Yuma, e Kentarou Kurashige. "Self-Generating Evaluations for Robot’s Autonomy Based on Sensor Input". Machines 11, n.º 9 (6 de setembro de 2023): 892. http://dx.doi.org/10.3390/machines11090892.
Texto completo da fonteMorrison, Sara E., Vincent B. McGinty, Johann du Hoffmann e Saleem M. Nicola. "Limbic-motor integration by neural excitations and inhibitions in the nucleus accumbens". Journal of Neurophysiology 118, n.º 5 (1 de novembro de 2017): 2549–67. http://dx.doi.org/10.1152/jn.00465.2017.
Texto completo da fonteHan, Ziyao, Fan Yi e Kazuhiro Ohkura. "Collective Transport Behavior in a Robotic Swarm with Hierarchical Imitation Learning". Journal of Robotics and Mechatronics 36, n.º 3 (20 de junho de 2024): 538–45. http://dx.doi.org/10.20965/jrm.2024.p0538.
Texto completo da fonteTang, Wanxing, Chuang Cheng, Haiping Ai e Li Chen. "Dual-Arm Robot Trajectory Planning Based on Deep Reinforcement Learning under Complex Environment". Micromachines 13, n.º 4 (31 de março de 2022): 564. http://dx.doi.org/10.3390/mi13040564.
Texto completo da fonteXu, Xibao, Yushen Chen e Chengchao Bai. "Deep Reinforcement Learning-Based Accurate Control of Planetary Soft Landing". Sensors 21, n.º 23 (6 de dezembro de 2021): 8161. http://dx.doi.org/10.3390/s21238161.
Texto completo da fonteSong, Qingpeng, Yuansheng Liu, Ming Lu, Jun Zhang, Han Qi, Ziyu Wang e Zijian Liu. "Autonomous Driving Decision Control Based on Improved Proximal Policy Optimization Algorithm". Applied Sciences 13, n.º 11 (24 de maio de 2023): 6400. http://dx.doi.org/10.3390/app13116400.
Texto completo da fontePotjans, Wiebke, Abigail Morrison e Markus Diesmann. "A Spiking Neural Network Model of an Actor-Critic Learning Agent". Neural Computation 21, n.º 2 (fevereiro de 2009): 301–39. http://dx.doi.org/10.1162/neco.2008.08-07-593.
Texto completo da fonteKim, MyeongSeop, e Jung-Su Kim. "Policy-based Deep Reinforcement Learning for Sparse Reward Environment". Transactions of The Korean Institute of Electrical Engineers 70, n.º 3 (31 de março de 2021): 506–14. http://dx.doi.org/10.5370/kiee.2021.70.3.506.
Texto completo da fonteDai, Tianhong, Hengyan Liu e Anil Anthony Bharath. "Episodic Self-Imitation Learning with Hindsight". Electronics 9, n.º 10 (21 de outubro de 2020): 1742. http://dx.doi.org/10.3390/electronics9101742.
Texto completo da fonteKubovčík, Martin, Iveta Dirgová Luptáková e Jiří Pospíchal. "Signal Novelty Detection as an Intrinsic Reward for Robotics". Sensors 23, n.º 8 (14 de abril de 2023): 3985. http://dx.doi.org/10.3390/s23083985.
Texto completo da fonteLiu, Yushen. "On the Performance of the Minimax Optimal Strategy in the Stochastic Case of Logistic Bandits". Applied and Computational Engineering 83, n.º 1 (31 de outubro de 2024): 130–39. http://dx.doi.org/10.54254/2755-2721/83/2024glg0072.
Texto completo da fonteAlkaff, Muhammad, Abdullah Basuhail e Yuslena Sari. "Optimizing Water Use in Maize Irrigation with Reinforcement Learning". Mathematics 13, n.º 4 (11 de fevereiro de 2025): 595. https://doi.org/10.3390/math13040595.
Texto completo da fontede Hauwere, Yann-Michaël, Sam Devlin, Daniel Kudenko e Ann Nowé. "Context-sensitive reward shaping for sparse interaction multi-agent systems". Knowledge Engineering Review 31, n.º 1 (janeiro de 2016): 59–76. http://dx.doi.org/10.1017/s0269888915000193.
Texto completo da fonteWang, Xusheng, Jiexin Xie, Shijie Guo, Yue Li, Pengfei Sun e Zhongxue Gan. "Deep reinforcement learning-based rehabilitation robot trajectory planning with optimized reward functions". Advances in Mechanical Engineering 13, n.º 12 (dezembro de 2021): 168781402110670. http://dx.doi.org/10.1177/16878140211067011.
Texto completo da fonte